پاسخ رسوبی - ژئومورفیک رودخانه‌های کوهستانی ایلام به سیلاب شدید سال 94

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه تهران

چکیده

مشاهدات و تفسیر اشکال رسوبی- ژئومورفیک رودخانه­­ها در طول سیلاب­های شدید و پس از آن، برای درک بهتر مکانیسم واکنش تغییرات رودخانه، اساسی می­باشد. از جمله پاسخ­های ژئومورفولوژیک رودخانه­ها به سیلاب می­توان به گسترش کانال ، حمل و نقل و رسوب مواد بسیار دانه درشت، تغییرات عرض پهنه­های فرسایشی و تراکمی ، فرسایش ساحلی کانال و ایجاد نهشته­ها و اشکال رسوبی در بستر و حاشیه رودخانه­ها اشاره کرد. هدف از انجام این مطالعه، شناسایی اشکال رسوبی و مورفولوژیک رودخانه­های کوهستانی بالادست سد ایلام در پاسخ به سیلاب شدیدی که در آبان­ماه سال 94 در استان ایلام  اتفاق افتاد می­باشد. برای نیل به این هدف، بازدیدهای میدانی از 100 سایت (هم در سطح آبراهه­های بالادست و هم در رودخانه­های اصلی منطقه­ مورد مطالعه) به­منظور جمع­آوری اطلاعات کیفی در فرآیندها (به­عنوان مثال انتقال رسوب، فرسایش ساحلی) که مسئول تغییرات مورفولوژیک است، صورت گرفت. با استفاده از روش توصیفی- تطبیقی، تجزیه و تحلیل رسوبات سیلابی از طریق بررسی خصوصیات کیفی بافت و ساختار نهشته­های سیلابی انجام شد. انواع مختلفی از نهشته­ها و رخساره­های سیلابی به­عنوان اثرات مشخصه سیلاب­ شدید ایلام ثبت و با استفاده ازGPS تعیین موقعیت شد. نتایج حاکی از وجود سه نوع نهشته رسوبی(تپه تخته­سنگی، نهشته طولی شنی تخته­سنگی و نهشته جانبی شنی تخته­سنگی) و یک نوع از اشکال روساحلی(باریکه تخته­سنگی) در آبراهه­های کوهستانی و چهار نوع نهشته رسوبی(نهشته طولی، نهشته مورب، نهشته مرکب جانبی و نهشته دماغه­ای) و یک نوع از اشکال روساحلی(پشته شنی) در رودخانه­های اصلی موردمطالعه بود. همچنین توالی خاص فضایی از اشکال رسوبی در امتداد رودخانه­های کوهستانی پیدا شد، به­طوری­که ابتدا تشکیلاتی از تپه و باریکه قلوه­سنگی ایجاد شده، سپس این اشکال توسط نهشته­های طولی و جانبی در بازه­های پایین­تر جایگزین شده بودند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Geomorphic Sedimentary response of Ilam mountainous rivers to extreme flood in 2015

نویسندگان [English]

  • zahra khanbabaei
  • ebrahim moghimi
  • mehran maghsoudi
  • mojtaba yamani
  • seyed kazem alavi panah
university of tehran
چکیده [English]

Introduction
Observation and interpretation of geomorphic and sedimentary features and processes conducted after and possibly during the flood event are fundamental to developing a better understanding of the mechanisms responsible for channel changes Extreme flood events increase stream power and the rates of erosion and accumulation in the river channel. The geomorphological effect of a flood depends on the size of the stream, magnitude, and frequency of the flood event and on the physical properties of the channel, banks, and floodplain. In October 2015, following the occurrence of severe and sudden rainfall, three large and devastating floods occurred with a maximum instantaneous discharge of 230 m3 / s from 6 to 8 October in Ilam province. The floods caused major changes in the morphology of Ilam's main streams and rivers and caused various sediments and deposits in the bed and rivers of Ilam. Since few studies have been done in this field, this research was conducted with the aim of investigating the geomorphic sediment response of Mountain Rivers on the creation of flood landforms upstream of Ilam dam to severe flood events.
Methodology
100 sites were studied in waterways of the upper Ilam dam drainage basin after flood. The shape, location, dimensions and deposits of large depositional forms (bars) were documented. The bars are regarded as mega forms, strictly connected with the alluvial sedimentary style. Smaller depositional forms were not investigated because their formation was controlled by local hydrodynamic conditions, and moreover, they were quite rare in the coarse-grained channels. All waterways were divided into two groups: streams and rivers. This subdivision was necessary because both qualitative and quantitative character of depositional forms appeared to be different in these systems.
Results and Discussion
Most of the depositional effects in mountain streams are concentrated within the channel. Boulder mounds are the most typical bar type in the upper reaches of streams. Deposition of coarse-grained material takes place during the flood peak in areas of lower stream power between the main current tracts. Gravel–boulder longitudinal bars dominate in the lower reaches of streams; these are distinctly elongated forms located within the channel. Gravel–boulder side bars appear in slightly sinuous reaches of stream channels. The bars exist close to both banks. Overbank depositional forms of streams are relatively rare. Boulder berms are characteristic of large floods. A boulder berm is a coarse-grained levee formed immediately above the bank crest, in the zone of large velocity gradients during the flood peak. Longitudinal bars are formed in the central part of river channels. Their plan form is elongate, oval or rhomboid. Large compound bars commonly develop in wide zones of nearly straight channel courses. Unit longitudinal bars result from deposition in crossover zones in the slightly sinuous channel. Longitudinal bars play a significant role in the process of braiding. They diverge the current and enlarged, compound bars lead to new channel growth. A diagonal bar is the most abundant and characteristic macro form from the group of side bars. Diagonal bars are typical of river channel reaches characterized by slight sinuosity. They exist alternatively close to both channel banks, immediately downstream from gentle bends. A side compound bar is the second type of the bar distinguished within the group of side macro forms. This is a large-scale bar that exists in the zones of channel widening. These bar types were only noted in channels with tendency for braiding. A coarse-grained point bar is the next characteristic type of side macro form. It differs from other side-type bars by location in the channel, morphology, and mode of accumulation. Point bars exist in sharp bends. A gravel levee is formed on the lowermost terrace, close to the channel bank. Sometimes its formation was caused by the stems of trees growing along the river channel. The basic feature of stream alluvium is that lithofacies type is weakly dependent on parent depositional form. Generally, deposits are characterized by: very coarse grain size, lenticular shape of beds and imbricated structure. All bar derived deposits of the main rivers studied represent one lithofacies assemblage. Gravel and boulder clast-supported beds with imbricated structure or are the most abundant lithofacies derived from the bars.
Conclusion
There is a relatively regular spatial succession of depositional processes and forms along the mountain streams. In the uppermost reaches, only erosion takes place. Depositional processes ensue downstream. Formation of boulder mounds and boulder berms take place first. These forms are replaced by longitudinal bars and side bars in lower reaches. One phenomenon was characteristic both of streams and main rivers: the zone of increased deposition always follows the zone of erosion. Moreover, the ratio of fluvial deposition is proportional to intensity of upstream erosion. Both texture and structure of mountain stream alluvium indicate very weak relationship with parent depositional form type. Generally, deposits are characterized by: very coarse grain size, beds are of lenticular shape and their structure is typically imbricated. The most abundant bar types of main rivers are represented by one lithofacies spectrum. The most common lithofacies are clast-supported gravel and boulders with imbricated structure.

کلیدواژه‌ها [English]

  • Flood Facies
  • Morphological Changes
  • Extreme Flood
  • Ilam Dam
  • جهادی طرقی، مهناز. (1387). علل و آثار ژئومورفیک سیلاب­های شدید(کاتاستروفیک) رودخانه مادرسو (سال­ های 80 و 81). دانشکده جغرافیای دانشگاه تهران.
  • رضایی مقدم، محمدحسین؛ اسماعیلی، رضا. (1383). بررسی آثار ژئومورفولوژیکی سیلاب در حوضه رئیس­کلا : البرز شمالی. فصلنامه مدرس علوم انسانی. دوره نهم. شماره چهارم. صص 18-1.
  • شرکت آب منطقه­ای استان ایلام، داده­های هیدرمتری مربوط به حوضه مورد مطالعه.
    • Brierley, G.J., 1991. Floodplain sedimentology of the Squamish River, B.C.: relevance of element analysis. Sedimentology 38, 735–750.
    • Hauer, C., Habersack, H.2009. Morphodynamics of a 1000-year flood in the Kamp River, Austria, and impacts on floodplain. Earth Surf. Process. Landforms 34, 654–682.
    • Hradek, M. (2000). Geomorphic effects of the July 1997 flood in the North Moravia and Silesia (Czech Republic)). Geography magazine 52(4):303–32.
    • Jakob, M., Jordan, P., 2001.Design flood stimates in mountain streams: The need for a geomorphic approach.Can. J. Civ.Eng28, 425-439
    • Loczy, D. 2013. Geomorphological Impacts of Extreme Weather, Case Studies from Central and Eastern Europe. Springer Geography. University of Pecs, Pecs, Hungary.
    • Kochel, R.C., Hayes, B.R., Muhlbauer, J., Hancock, Z., Rockwell, D.2015. Geomorphic response to catastrophic flooding in north-central Pennsylvania from Tropical Storm Lee (September 2011): Intersection of fluvial disequilibrium and the legacy of logging. Geosphere, published online on 23 December 2015 as doi:10.1130/GES01180.1.
    • Macklin MG, Rumsby BT, Heap MT. 1992. Flood alluviation and entrenchment: Holocene valley-floor development and transformation in the British uplands. Geological Society of America Bulletin 104: 631–643.
    • Magilligan, F.J., Buraas, E.M., Renshaw, C.E., 2015. The efficacy of stream power and flow duration on geomorphic responses to catastrophic flooding. Geomorphology 228, 175–188.
    • Miller AJ (1990) Flood hydrology and geomorphic effectiveness in the central Appalachians.Earth Surf Process Landforms 15(2):119–134
    • Rusnák, M., Lehotský, M., Sládek, J.2015. Geomorphic adjustment of a gravel bed meandering river as response to contemporary floods and management issues (The Ondava River, Eastern Slovakia). Mobility & river managment.A4,1-3
    • Schmidt, J.C., 1990. Recirculating flow and sedimentation in the Colorado River in Grand Canyon, Arizona.J.Geol.98, 709–724.
    • Zielinski, T., 2003. Catastrophic flood effects in alpine/foothill fluvial system (a case study from the Sudetes Mts, SW Poland). Geomorphology 54 , 293–306