دگرریختی ثقلی ژرف شیب، در حوضه کششی سیه‌چشمه: امتداد گسل گیلاتو-سیه‌چشمه-خوی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه زمین‌شناسی، دانشگاه بیرجند، بیرجند

2 استاد، گروه زمین‌شناسی، دانشکده علوم، دانشگاه بیرجند، بیرجند

3 دانشیار، پژوهشکده علوم زمین، سازمان زمین‌شناسی و اکتشافات معدنی کشور، تهران، ایران

4 استاد دپارتمان علوم زمین، دانشگاه ETH زوریخ، سوئیس

5 دانشیار، گروه زمین‌شناسی، دانشگاه بیرجند، بیرجند

چکیده

در این مقاله برای اولین بار در ایران، نوعی از ناپایداری شیبی در بخش همپوشان دو پاره گسلی گیلاتو-سیه‌چشمه-خوی که در یک ترکیب خم رهایی تشکیل حوضه کششی سیه‌چشمه را داده‌اند، تحت عنوان دگرریختی ثقلی ژرف شیب معرفی و مطالعه شده است. گسل گیلاتو-سیه چشمه-خوی، با سازوکار جنبشی راستالغز راست‌بر و با راستای شمال‌باختری-جنوب‌خاوری در بخش میانی پهنه برخوردی صفحه‌های قاره‌ای عربی-اوراسیا، در شمال‌باختری ایران واقع شده است. در این پژوهش، عوامل موثر بر این رخدادها و سایر ناپایداری‌های شیبی این منطقه و نیز ارتباط آنها با ساختارهای زایشی حوضه‌های کششی و تاثیر تغییرات آهنگ لغزش در امتداد گسل، بر روی ناپایداری‌های شیبی مورد بررسی قرار گرفته است. بدین منظور، از طریق سن سنجی رادیوکربن نمونه خاک دیواره آبراهه منحرف شده بر روی پاره گسلی سیه‌چشمه-خوی ( بخش جنوب‌خاوری گسل گیلاتو-سیه چشمه-خوی) و همچنین با استناد به سن روانه‌های سنگ‌های بازالتی منطقه در مطالعات پیشین و تشخیص مقدار جابجایی متاثر از اثر عملکرد پاره گسلی گیلاتو-سیه‌چشمه (بخش شمال‌باختری گسل گیلاتو-سیه چشمه-خوی)، به ترتیب آهنگ لغزش 4.6±0.3 mm/yr و 1.65 ± 0.1 mm/yr برای این پاره‌های گسلی محاسبه شده است. این تغییر آهنگ لغزش در امتداد گسل، باعث فراخاست هر چه بیشتر بخش باختری حوضه کششی سیه‌چشمه نسبت به بخش خاوری آن و همچنین تشکیل افشانه‌های گسلی راندگی در پایانه شمال‌باختری پاره گسلی سیه‌چشمه-خوی شده است و در نتیجه، پدیده‌های دگرریختی ثقلی ژرف در شیب‌های ارتفاعات محصور کننده این حوضه کششی رخ داده است.

کلیدواژه‌ها


عنوان مقاله [English]

Deep-seated gravitational slope deformation in the Siahcheshmeh pull-apart basin: along the Gailatu-Siahcheshmeh-Khoy fault

نویسندگان [English]

  • Cyrus Esmaeili 1
  • Mohammad Mahdi Khatib 2
  • Hamid Nazari 3
  • Jean-Pierre Burg 4
  • Ebrahim Gholami 5
1 birjand university
2 birjand university
5 birjand university
چکیده [English]

Introduction:
Tectonics play an important role in the evolution of large-scale gravitational phenomenon (Galadini, 2006), mainly through the formation of steep slopes. Competing tectonic and surface processes build and destroy topography in active orogens, hence, thrusting, crustal thickening and isostatic response result in rock uplift and relief production (Agliardi et al., 2013). In some cases, the faults play a primary role in increasing the local relief and their activity is an important geomorphic factor conditioning the gravitational movements (Galadini, 2006). We have studied this kind of gravitational movements and slope instabilities termed “Deep-Seated Gravitational Slope Deformation (DSGSD)”. This paper focuses on a study aimed at defining the role of structural setting, local uplift and morpho-structural evolution on the onset and development of a DSGSD that affects the western parts of the Siahcheshmeh pull-apart basin (SPAB) in a releasing bend of the Gailatu-Siah Cheshmeh-Khoy fault.
DSGSD:
DSGSDs are gravity-induced and large to extremely large mass movements generally affecting the entire length of high-relief slopes, extending up to 200–300 m in depth, which can frequently extend beyond the slope ridge and evolving over long periods of time. (Crosta et al., 2013). DSGSDs are not considered hazardous phenomena because they evolve very slowly. Despite their slow deformation rates, they can cause damage to surface and underground man-made structures (Soldati, 2013). The main feature that distinguishes DSGSDs from landslides is the absence of a continuous or well-defined sliding surface (Soldati, 2013) and discontinuous or poorly defined boundaries, both laterally and at their lower ends (Crosta et al., 2013).
Gailatu-Siah Cheshmeh-Khoy fault:
The 200 km long (Karakhanian et al., 2004; Berberian, 1977) Gailatu-Siah Cheshmeh-Khoy fault, with the same trend as the North Tabriz, Chaldiran, Nakhichevan and Pambak-Sevan-Syunik faults, is regarded as a part of the active strike-slip fault system in the Arabian and Eurasian collision zone, which extends from 42˚ E to 48˚ E with the Tutak and North-Tabriz faults in the west and east, respectively (Selçuk et al., 2016). This system includes a series of right-lateral strike-slip faults between the southern front of the Lesser Caucasus to the northeast and Bitlis-Zagros suture zone to the southwest. The available literature, fault plane solutions, offsets of various geomorphological and man-made features indicate the right-lateral strike-slip nature of the Gailatu-Siah Cheshmeh-Khoy fault. The trace of this fault is very obvious and displays a series of well-developed and preserved morphologic structures indicating recent activity of the fault, such as fault scarps and horizontal deflection in the Quaternary features, pull-apart basins, hot water springs and uplifted terrace deposits.
Discussion and results:
Our geological and structural survey along the Gailatu-Siah Cheshmeh-Khoy fault confirms the presence of a large slope instability in the western flank of SPAB. In order to understand the relationship between the nucleation and evolving DSGSDs with structural aspects of this fault, we focused on slip rate of this fault in two segments, the Gailatu-Siahcheshmeh (northwestern sector of Gailatu-Siah Cheshmeh-Khoy fault) and the Siahcheshmeh-Khoy fault segments (Southeastern sector of Gailatu-Siah Cheshmeh-Khoy fault), which overlap at a right step-over in the SPAB. Along the Gailatu-Siahcheshmeh fault segment, Quaternary lavas, known as Maku basalts, form a few ridges that are elongated parallel to the strike of the fault and displaced as a result of this fault activity by ~ 725±50. Using the about 400 kyr published age of these basalts (Pb206/U238 and Ar40/Ar39 dating methods, Allen et al., 2011; Lechmann et al., 2018), a mean slip rate has been calculated 1/65 ± 0.1 mm/yr. On the Siahcheshmeh-Khoy fault segment, we excavated a trench to determine the fault geometry and its rake, and to assess recent offsets. Radiocarbon dating of the youngest deposits in the stream wall that displaced right-lateral by 42±4 m, yield 6764±283 calBC, suggest a horizontal slip rate of 4.6±0.3 mm/yr. The northwestern and southeastern terminations of Siahcheshmeh-Khoy fault segments form the eastern and western flanks of SPAB, respectively. Hence, the higher slip rate of Gailatu-Siahcheshmeh fault compared to Siahcheshmeh-Khoy fault, causes uplift of the western SPAB sectors. This is accompanied by thrust faulting in a general northwest-southeast direction as a splay configuration at the termination of Siahcheshmeh-Khoy fault. Consequently, local uplift has been taken place in the western flank of SPAB that is readily obvious from higher altitude of this flank relative to the eastern side. Therefore, DSGSDs have been occurring almost along the entire slopes facing the pull-apart basin. On the other hand, decreasing altitude in the SPAB in the releasing bend and normal faults are additional controlling and intensifying factors for DSGSD. As a result, most of the expected structural features, especially splay strands of Siahcheshmeh-Khoy fault and normal faults at the margin of SPAB, have been covered by DSGSD phenomena. Therefore, except at a small part of the southwest of SPAB, we could not find exposure of normal faults along the western flank.

کلیدواژه‌ها [English]

  • Deep-seated gravitational slope deformation
  • Gailatu-Siahcheshmeh-Khoy fault
  • Siahcheshmeh pull-apart basin
  • slip rate
  • slope instability
مجیدی، ج؛ قلمقاش، ج، ۱۳۸۳، نقشه زمین شناسی ۱:۱۰۰۰۰۰ سیه چشمه، انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور.
Agliardi, F., Crosta, G., & Zanchi, A. (2001). Structural constraints on deep-seated slope deformation kinematics. Engineering Geology, 59(1-2), 83-102.
Agliardi, F., Zanchi, A., & Crosta, G. B. (2009). Tectonic vs. gravitational morphostructures in the central Eastern Alps (Italy): constraints on the recent evolution of the mountain range. Tectonophysics, 474(1-2), 250-270.
Agliardi, F., Crosta, G. B., & Frattini, P. (2012). 18 Slow rock-slope deformation. Landslides: Types, Mechanisms and Modeling, 207.
Agliardi, F., Crosta, G. B., Frattini, P., & Malusà, M. G. (2013). Giant non-catastrophic landslides and the long-term exhumation of the European Alps. Earth and Planetary Science Letters, 365, 263-274.
Allen, M. B., Mark, D. F., Kheirkhah, M., Barfod, D., Emami, M. H., & Saville, C., 2011- 40Ar/39Ar dating of Quaternary lavas in northwest Iran: constraints on the landscape evolution and incision rates of the Turkish-Iranian plateau. Geophysical Journal International, 185(3), 1175–1188.
Ambrosi, C., Crosta, G.B. (2011). Valley shape influence on deformation mechanisms of rock slopes. In: Jaboyedoff, M. (Ed.), Slope Tectonics. Geological Society, London, pp. 215–233.
Ambrosi, C., & Crosta, G. B. (2006). Large sackung along major tectonic features in the Central Italian Alps. Engineering Geology, 83(1-3), 183-200
Beck, A. C., 1968. Gravity faulting as a mechanism of topographic adjustment. New Zealand Journal of Geology and Geophysics, 11(1), 191–199.
Bisci, C., Burattini, F., Dramis, F., Leoperdi, S., Pontoni, F., & Pontoni, F. (1996). The Sant'Agata Feltria landslide (Marche Region, central Italy): a case of recurrent earthflow evolving from a deep-seated gravitational slope deformation. Geomorphology, 15(3-4), 351-361.
Burbank, D.W., Anderson, R.S., 2001. Tectonic Geomorphology. Blackwell Scientific, Oxford. 270 pp.
Copley, A., & Jackson, J., 2006- Active tectonics of the Turkish-Iranian Plateau. Tectonics, 25(6).
Deng, Q. ., Zhu, Z. ., Cui, Z. ., & Wang, X. . (2000). Mass rock creep and landsliding on the Huangtupo slope in the reservoir area of the Three Gorges Project, Yangtze River, China. Engineering Geology, 58(1), 67–83.
Esposito, C., Bianchi-Fasani, G., Martino, S., & Scarascia-Mugnozza, G. (2013). Quaternary gravitational morpho-genesis of Central Apennines (Italy): Insights from the Mt. Genzana case history. Tectonophysics, 605, 96-103.
Faridi, M., Burg, J.-P., Nazari, H., Talebian, M., & Ghorashi, M., 2017- Active faults pattern and interplay in the Azerbaijan region (NW Iran). Geotectonics, 51(4), 428–437.
Feda, J. (1973). Stability of natural slopes. In Proc. Int. Conf. Smfe (Vol. 6).
Galadini, F. (2006). Quaternary tectonics and large-scale gravitational deformations with evidence of rock-slide displacements in the Central Apennines (central Italy). Geomorphology, 82(3-4), 201-228.
Hermann, S. W., & Becker, L. P. (2003). Gravitational spreading ridges on the crystalline basement of the Eastern Alps (Niedere Tauern mountain range, Austria). Mitteilungen der Österreichischen Geologischen Gesellschaft, 94, 123-138.
Karakhanian, A., Djrbashian, R., Trifonov, V., Philip, H., Arakelian, S., & Avagian, A., 2002- Holocene-historical volcanism and active faults as natural risk factors for Armenia and adjacent countries. Journal of Volcanology and Geothermal Research, 113(1-2), 319–344.
Mahr, T., and Nemčok, A., 1977. Deep-seated creep deformations in the crystalline cores of the Tatry Mts. Bulletin of the IAEG, 16, 104–106.
Mahr, T. (1977). Deep—Reaching gravitational deformations of high mountain slopes. Bulletin of the International Association of Engineering Geology-Bulletin de l'Association Internationale de Géologie de l'Ingénieur, 16(1), 121.
Mahr, T. B. F., & Baliak, F. (1973). Regional investigation of slope deformations in the high mountain area of the West Carpathians. In Proc. 10th Congress of the Carpathian-Balkan Geolog. Assoc., Sect (Vol. 5, pp. 169-178).
Malgot, J., 1977. Deep-seated gravitational slope deformations in neovolcanic mountain ranges of Slovakia. Bulletin of the IAEG, 16, 106–109.
Molnar, P. & Lyon-Caen, H. 1989. Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins. Geophysical Journal International, 99, 123–153.
Nemčok, A., 1972. Gravitational slope deformation in high mountains. In Proceedings 24th International Geological Congress, Montreal, Sect. 13, pp. 132–141.
Pasek, J., 1974. Gravitational block-type movements. In Proceedings 2nd International Congress. São Paulo, Brasil: IAEG, pp. V-PC-1.1–V-PC-1.9.
Pasuto, A., Soldati, M., 2013. Lateral spreading. In: Shroder, J. (Editor in Chief), Marston, R.A., Stoffel, M. (Eds.), Treatise on Geomorphology. Academic Press, San Diego, CA, vol. 7, Mountain and Hillslope Geomorphology, pp. 239–248.
Radbruch-Hall, D. H., Varnes, D. J., & Savage, W. Z. (1976). Gravitational spreading of steep-sided ridges (“sackung”) in Western United States. Bulletin of the International Association of Engineering Geology-Bulletin de l'Association Internationale de Géologie de l'Ingénieur, 13(1), 23-35.
Radbruch-Hall, D. H., Varnes, D. J., & Colton, R. B. (1977). Gravitational spreading of steep-sided ridges in Colorado: US Geological Survey Journal of Research, v. 5.
Radbruch-Hall, D. H., 1978. Gravitational creep on rock masses on slopes. In Voight, B. (ed.), Rockslides and avalanches. Amsterdam: Elsevier, pp. 607–675.
Savage, W.Z. (1994). Gravity induced stresses in finite slopes. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 31, 471–483.
Schultz-Ela, D. D. 2001. Excursus on gravity gliding and gravity spreading. Journal of Structural Geology, 23, 725–731.
Selçuk, A. S., Erturaç, M. K., & Nomade, S., 2016- Geology of the Çaldıran Fault, Eastern Turkey: Age, slip rate and implications on the characteristic slip behaviour. Tectonophysics, 680, 155–173.
Sharkov, E., Lebedev, V., Chugaev, A., Zabarinskaya, L., Rodnikov, A., Sergeeva, N., & Safonova, I. (2015). The Caucasian-Arabian segment of the Alpine-Himalayan collisional belt: Geology, volcanism and neotectonics. Geoscience Frontiers, 6(4), 513-522 Soldati, M. (2013). Deep-seated gravitational slope deformation. In Encyclopedia of Natural Hazards (pp. 151-155). Springer Netherlands.
Tchalenko, J.S., 1977- A reconnaissance of seismicity and tectonics on the northern border of the Arabian plate (Lake Van region). Rev. Geogr. Phys. Geol. Dyn. 19, 189–208.
Terzaghi, K. (1962). Stability of steep slopes on hard unweathered rock. Geotechnique, 12(4), 251-270.
Zischinsky, Ü., 1966. On the deformation of high slopes. In Proceedings 1st Conference of International Society for Rock Mechanics, Lisbon, Sect. 2, pp. 179–185.