بررسی روند تغییرات ژئومورفولوژیکی تومبولوی بندر تنگ از سال 1351 تا سال 1394

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه جغرافیای طبیعی دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده

سواحل به عنوان یکی از مکان‌های‌ مخاطره‌خیز تحت تأثیر امواج دریا، همواره دچار تغییر و تحولات مستمر ژئومورفولوژیکی است. تومبولو یکی از این عوارض تراکمی ماسه‌ای است که تحت تأثیر امواج دستخوش تغییراتی می‌شود و مخاطرات ناشی از آن همواره منطقه را تهدید می‌کند به همین دلیل مطالعة این عارضه ضروری بنظر می‌رسد. این مطالعه با هدف پایش سری‌زمانی تغییرات ژئومورفولوژیکی تومبولوی بندر تنگ در سواحل استان سیستان و بلوچستان با کمک سنجش از دور و بازدید میدانی صورت گرفته است. بررسی‌های انجام شده نشان از تغییرات چشمگیر ژئومورفولوژیکی در این عارضه بوده است. نتایج حاصل از بازدید میدانی، تحلیل‌های سری زمانی (45سالة) داده‌های ماهواره لندست و آمار ایستگاه‌های سینوپتیک و بویه نشان داد که در برخی از سال‌ها جریان‌ها و امواج شدید دریایی باعث تغییرات ژئومورفولوژیکی گسترده، به صورت قطع نمودن زبانه ماسه‌ای و از بین بردن تومبولو در بندر تنگ شده، به گونه‌ای که در طول دوره آماری، جریان امواج در سال‌های 1972، 1989، 2000 و 2016 ارتباط جزیره تنگ را با خشکی قطع کرده است که به ترتیب با فاصله زمانی 17، 11 و 16 ساله مشخص شده‌اند. بنابراین دینامیک فعال دریا باعث شده تا مخاطرات امواج مانع ایجاد سکونتگاه‌های انسانی در این منطقه گردد. اما جزیره تنگ به تنهایی هیچگاه به طور کامل از بین نرفته است و فقط دستخوش تغییراتی شده است. با توجه به شرایط موجود و به منظور مدیریت ساحلی این جزیره، احداث موانع مصنوعی به منظور رسوبگذاری ماسه‌های ساحلی لازم به نظر می‌رسد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating Process of Geomorphological Variation of Tombolo in Tang Seaport during 1972-2015

نویسندگان [English]

  • Hossein Negaresh
  • Samad Fotoohi
  • masoud sistani Badooei
  • Noorallah Nikpour
Department of Geography, University of Sistan and Baluchestan, Zahedan, Iran
چکیده [English]

Introduction

Coasts are among the most important and strategic places with special importance for countries. Having 673 km of water border in the north and 2098 km in south, Iran has a great potential for commercial, touristic, and military purposes. The beaches, as one of the most endangered places under the influence of sea waves, are constantly undergoing geomorphological changes. Tombolo is one of the effects of coastal sand compression that is affected by waves and the resulting hazards always threaten the inhabitants of the area, so it is necessary to study this effect. The purpose of this study was to monitor the time series of geomorphological changes in Tombolo of Bandar Tang on the coasts of Sistan and Baluchestan province using remote sensing and field surveys. The Tang Seaport tombolo is located on the southeastern coasts of Iran between longitude of °59 ′53 ″10 to °59 ′54 ″10 E and latitude of °25 ′20 ″29 to °25 ′21 ″01 N. This geomorphological feature with the area of 0.3 km2 is located at the south of Sistan and Baluchistan Province, Konarak County, 97 km distance from the west of Konarak at the south of Tang Seaport. therefore, it is essential to study the geomorphological shape of coasts in order to manage the reduction of such hazards.

Methodology
The present study was conducted using statistical analysis, field survey, and remote sensing. In order to investigate the geomorphological changes in the tombolo of Tang Seaport, different information was used. In this regard, the Landsat satellite imagery from 1972 to 2016 was used. To analyze the regime of the atmospheric and sea currents in this region, the statistics of the stations close to the region was used, which included the daily statistics of Chabahar and Jask synoptic stations, and statistics of the PMO buoy station as well as marine buoy station at city of Chabahar. In order to analyze the geomorphological features of the tombolo in Tang Seaport, Gis & Rs was used. Satellite imagery was provided during the statistical period and underwent band composition using ENVI software. Then, it was digitized in GIS software and the morphometric changes of the tombolo and sandspit were calculated. Afterwards, using WRPlot software, the wind rose and wave rose of the region were depicted and their association with geomorphological changes was investigated.

Results and discussion
The obtained results showed that during the studied statistical period, the tombolo’s connection to the mainland was interrupted in four cases in 1972, 1989, 2000, and 2016, the main reason of which was the surges along the wind direction that have eroded and destroyed the tombolo sand spit. The main cause of these currents was the summer monsoons of the southeastern Asia, which cause the anomalies in the Sea of Oman currents every year. Since the tombolo sand spit is located at the north of island, the changes and power of the waves in the Sea of Oman from west and east have eroded and removed the sand spit so that the western direction of the waves in 1988 and 2015 and their eastern direction in 1999 have resulted in the disconnection of this geomorphological feature. The existing evidence showed that the eastern currents in the Sea of Oman were the cause of the disconnection of the tombolo sand spit in 1972, which had acceptable correlation with the sand spit separation in 1999. According to the results of the above table, physiography of the tombolo and its sand spit as well as position of Tang Seaport and its sand spit had a close relationship with the relatively calm years in the Sea of Oman, and whenever the seasonal currents of Southeastern Asia had less energy, the erosion processes were weaker and sedimentation was increased, so that the specific geomorphological changes occurred proportionate to the direction of the waves in that year.

Conclusion
Studies have shown significant geomorphological changes in this phenomenon. The results of field visits, time-series analyzes (45 years) of Landsat satellite data and statistics of synoptic and buoy stations showed that in some years severe sea currents and waves caused extensive geomorphological changes, such as discontinuation of sandbags and elimination of tombolo. The harbor has been narrowed, so that during the statistical period, waves in 1972, 1989, 2000, and 2016 interrupted the island's connection with the land through sandy tongue erosion. Marked with time intervals of 17, 11 and 16 years, respectively. Therefore, the active dynamics of the waves in Tombolo, the port of Tang, have prevented the hazards of the waves from creating human settlements in the area. Due to the existing conditions and for the coastal management of Tombolo Port Tang and the use of existing potentials, the construction of artificial barriers for sedimentation of coastal sands seems necessary. It should be noted that this geomorphologic complication has never been eliminated during the period under study and has only undergone changes that have.

کلیدواژه‌ها [English]

  • geomorphology
  • tombolo
  • Tang Seaport
  • Makran coast
  • Sea of Oman
  • سلطانیان، محمود؛ حلیبیان، امیرحسین، 1397، کاربرد سنجش از دور در علوم محیطی (روش‌های پردازش تصویر در ENVI)، چاپ اول، انتشارات جهاد دانشگاهی، اصفهان.
  • صالحی پور میلانی، علیرضا؛ کرامت نژاد افضلی، 1391، بررسی توفان گونو و تأثیرات آن بر ژئومورفولوژی خطوط ساحلی دریای مکران با استفاده از سنجش از دور، سازمان زمین شناسی و اکتشافات معدنی کشور، مدیریت زمین شناسی دریایی، تهران، ایران دانشکده جغرافیا، دانشگاه تهران، صص32-23.
  • معتمد، احمد؛ محمد رضا غریب نیا، 1387، تکامل مکران ساحلی طی کواترنر پسین، مجله پژوهش‌های جغرافیایی، دوره صفر ، شماره صفر، صص 87-77.
  • نژاد افضلی، کرامت، 1390، سازوکار تشکیل و تغییر تومبولو، لاگون و سد ماسه‌ای در ساحل بیر ناحیه بندرتنگ ایران (دریای مکران)، مجله علمی پژوهشی علوم زمین، دوره 20، شماره 80، صص 148-143.
  • نگارش، حسین، 1385، ژئومورفولوژی ساحلی خور تنگ (Tang) و ویژگی‌های آن، مجله‌ی جغرافیا و توسعه، صص 88-69.
  • نگارش، حسین، 1391، ژئومورفولوژی ساختمانی و دینامیک، چاپ اول، انتشارات مرندیز، مشهد.
    • Akif Ceylan., M., 2012, General Overview of the Tombolos on Turkey’s Coastlines. IDOSI Publications, Department of Geography, Faculty of Arts and Sciences, Marmara University, 34722 Istanbul, Turkey, pp: 907- 914.
    • Biolchi, S., 2014, Geomorphological identification, classification and spatial distribution of coastal landforms of Malta (Mediterranean Sea), Department of Chemical and Geological Sciences, pp: 1-13.
    • Bird, E, .2008. Coastal Geomorphology, Principal Fellow in Geomorphology University of Melbourne, Australia.
    • centralia College Academics Education, Coastal Processes, (www.centralia.edu), Page:1-11.
    • Hansom, J.D., 2007, ST NINIAN'S TOMBOLO. Coastal Geomorphology of Great Britain Chapter 8: Sand spits and tombolos – GCR site reports Site: ST NINIAN'S TOMBOLO.pp: 1-5.
    • Lopez, R., 2014. Beach Restoration at Grand Velas Hotel, Riviera Maya, Mexico, Journal of Coastal Research, Special Issue, No. 71, pp: 86–92.
    • Manatu Mo Te Taiao. 2008, Coastal Hazards and Climate Change. Climate Change Office Ministry for the Environment Manatu Mo Te Taiao, p 129.
    • Morelock, J., 1978, Puertorico Coastal Type, Shoreline of Puerto Rico. pp: 1-41.
    • Sara, B., 2016. Geomorphological identification, classification and spatial distribution of coastal landforms of Malta (Mediterranean Sea) Modena and Reggio Emilia, Modena, pp: 1-13.
    • Smith, J., 1993, The Houb, Dales Voe: coastal processes. In Shetland Isles (eds J. Birnie, J.Gordon, K. Bennett and A. Hall), Quaternary Research, pp: 246-247.
    • Snead, R., 1970, Physical Geography of Makran Coastal Plain of Iran, University of New Mexico, Albuquerque, and pp: 320-363.
    • Bird, E., 2008, Coastal geomorphology an Introduction, university Mel born, Australia John wiley and Sons, Mel born.
    • Vita fenzi, C., 1979, Contribution to be Quaternary Geology of Southern of Iran. Geological and Mineral of Survey of Iran, Report, and p: 307.
    • Mehmet, A.C. 2012, General Overview of the Tombolos on Turkey’s Coastlines, World Applied Sciences Journal 16 (7): 907-914.
    • Guillermo, P.B., Jose, A.J., Marcel, J.S., Judith, B. 2011. Shoreline response to detached breakwaters: overview of design guidelines and application to field cases, Polytechnic University of Catalonia, Department of Civil and Environmental Engineering (EHMA), P 1-109.