شبیه سازی شبه دو بعدی جریان سیلاب رودخانه لیقوان با تاکید بر دشت سیلابی با استفاده از تکنیک MIKE11

نوع مقاله : مقاله پژوهشی


1 استاد گروه ژئومورفولوژی، دانشکده برنامه ریزی و علوم محیطی، دانشگاه تبریز.

2 دانشجوی دکتری دانشکده علوم محیطی دانشگاه تبریز



مطالعات فراوانی به بررسی و مدلسازی جریان های سیلابی رودخانه لیقوان چای با نگرش های متفاوت پرداخته اند ولی در این مطالعات از مدل های یک بعدی در جهت مدلسازی استفاده شده است که یکی از ابعاد مهم در شبیه سازی که همان دشت سیلابی است در نظر گرفته نشده است. این مدل ها جزئیاتی از پخش سیلاب و تغییرات جریان میان کانال رودخانه و سیلاب دشت ها را ارائه نمی دهند. در این مقاله از مدلسازی شبه دوبعدی در محیط نرم افزار Mike 11 جهت شبیه سازی جریان سیلاب در رودخانه لیقوان چای استفاده شده است. نتایج نشان میدهد که مدل شبه دوبعدی با وجود زمان اجرای بسیار کوتاه تر ، دقت قابل قبولی در ارزیابی دبی، شبیه سازی روند پخش و کاهش حجم سیلاب دارد، که با واقعیت ذخیره شدن بخشی از سیلاب در دشت های سیلابی انطباق دارد و قادر است مشخصات جریان را در کانال اصلی رودخانه و دشت سیلابی به تفکیک ارائه دهد. نتایج بدست آمده از شبیه سازی شبه دوبعدی نشان می دهد که، سرعت سیلاب بر اساس دامنه شیب رودخانه کترل می شود و از آنجا که رودخانه لیقوان در محیط کوهستانی جاری است و شیب نسبتا بالایی دارد سیلاب های آن از یک سوء دارای زمان تمرکز کمتر و از سوی دیگر از سرعت بالایی برخوردار می باشند که بر توان تخریب آن با وجود دبی کم می افزاید. بیشترین توان تخریب سیلاب در مقطع 6 و 7 در مقابل کمترین توان تخریب در مقطع شماره 1 و 2 است.


عنوان مقاله [English]

Quasi 2 dimentional simulation of Lighvan River flood flow with emphasis on floodplain using MIKE11 technique

نویسندگان [English]

  • shahram roostaei 1
  • Fariba Ayaseh 2
  • Mohammad Hosein rezayi moghadam 1
1 University of Tabriz
2 Ph.D. Student, Faculty of Environmental Sciences, Tabriz University
چکیده [English]

Flood plain is a key ecological component in arid and semi-arid areas, with soil and water flowing as the most important pillar of agriculture as well as the habitat of humans.
However, what always threatens these ecologically sensitive areas is the occasional riot flood and irreparable financial and psychological damage. (Enzel et al,1993: 2289).
Undoubtedly, the occurrence of floods with rainfall intensity and frequency of storms and hydrological characteristics of the basin on the one hand, and anthropogenic activities and climate change caused by it on the other hand, has a direct relationship. It is also anticipated that suddenly occurred floods will increase dramatically in the near future due to global warming.(Kleinen and Petschel-Held, 2007:286. deMoel et al, 2009:291).
Therefore, in order to understand this natural phenomenon, it is necessary to have reliable hydrodynamic models that can correctly estimate the flood occurrence to reduce its risk and hazard.
Recently, advances in computational resources, data collection and the development of multiple numerical codes have increased the use of hydrodynamic modeling techniques to simulate flood plains.
Numerous studies have examined and modelled the flood flows in Ligvan River with different viewpoints so far. However, in these studies, one dimensional modeling in which flood plain has not been considered has been used. These models do not provide details of flood spreading and flood changes between the river channel and the plains floods. This paper presents a quasi-two-dimensional modeling in Mike 11 software used for simulating the flood flow in the Lighvan River. In quasi-two dimensional simulation, main river and flood plain modeling are conducted separately, and their connection are connecting channels. In this approach, the flood plain around the main river are introduced to the model as two virtual rivers in both sides of the main river. In addition, the main and the virtual river (which represents the flood plain) are connected to each other by connecting channels.
As long as the level of the water level in the main river has not reached the upstream level of the channel, discharge in virtual river is zero. As soon as the water level in the main river reaches the upstream level of the main channel, this part of flood enters the virtual river.
In order to simulate a quasi-two-dimensional model for Lighvan basin, the flow rate of 200 m3/s (maximum flood occurred in this river) is considered as the boundary condition of the upstream, and Q-H is employed for the downstream boundary, which is calculated by the software by using Manning’s relationship and cross-sectional information of desired location. In order to get better results, the roughness coefficient in the main part and flood plain were provided by using Chow table and field visits which was eventually introduced to the software. This research approved the potential of a quasi-two-dimensional hydrodynamic approach in comparison to one-dimensional and two-dimensional methods. Results indicated that flood dynamics in the flood plain plays an important role in flood simulation. Based on similar results, the amount of water flow in main channel of the river and at the upstream point is 112 m3/s, and the amount of water flow transmitted by the connections is equivalent to 87 m3/s showed a well-established continuity in these connective structures. Studies also show that a quasi-two-dimensional model is working similar to two-dimensional models in flood dispersion and also in inter and discharge flow from river channel, and offers acceptable accuracy in the calculation, while one-dimensional modeling with same cross sections does not show flood peak changes and does not take into account the decrease and increase in the volume of flood, occurred due to the dissemination and return flow to the river, and only shows the rerouting along the river course.
Other results of quasi-two-dimensional simulation showed that, since the Ligvan River is in high mountains and has a relatively high slope, its floods have less concentration time (one and half hours after the simulation) in the one hand, and relatively have a high velocity on the other hand which increases the ability of flood destruction. Also, the results depicted that the highest risk of flood is in 6th and 7th sections and the lowest one is in first and second sections which are consistent with the realities.
The zoning maps of the velocity, depth and risk of floods show that vegetation in different areas of the flood plain affects the characteristics of flood propagation. The results show that with decreasing vegetation, the depth of flood waves decreases while the discharge current increases. Increasing the high risk zone around the main canal is associated with reduced vegetation cover.
In addition, many studies have shown that compared to two-dimensional models, the MIKE 11 quasi-2D is able to provide accurate information on streaming; In general, it works appropriately to estimate flood spreading area specially for flooding up to 325 cubic meters per second. But in particular, some hydrological processes, such as loss of evapotranspiration and interaction between river water and groundwater are ignored.

کلیدواژه‌ها [English]

  • Flood simulation
  • Flood plain
  • quasi-two-dimensional modeling Mike 11
  • Lighvan River
  • Vegetation
  • باقری، علی. صدقی، حسین.(1388). مطالعه پهنه بندی سیلاب با استفاده از مدل های ریاضی یک بعدی و دو بعدی. هشتمین سمینار بین المللی مهندسی رودخانه، اهواز، دانشگاه شهید چمران.
  • بهداروندی عسکر، پارسی، احسان. ایزدجو، فرهاد.(1388). مقایسه نتایج مدل یک بعدی MIKE11 با مدل دو بعدی MIKE FLOOD  و تعیین حساسیت مدل MIKE11 ، هشتمین سمینار بین المللی مهندسی رودخانه، اهواز، دانشگاه شهید چمران.
  • بی نام. 1386 . راهنمای روش های محاسبه آب شستگی موضعی. نشریه شماره 318 الف، سازمان مدیریت و برنامه ریزی کشور.صص 112-92
  • ضیائیان فیروز آبادی، پرویز . موسوی، آزاده . شکیبا، علیرضا و حمید رضا ناصری.(1382). شبیه سازی رخداد سیلاب با استفاده از داده های سنجش از دور و مدل سلولهای خودکار (مطالعه موردی بخشی ازحوضه رود خانه تالارقائم شهر). نشریه علمی پژوهشی انجمن جغرافیایی ایران. جلد اول، پاییز و زمستان 1382. 35-16
  • کرمی، فریبا. بیاتی خطیبی،مریم و هاشم رستم زاده.(1385). پهنه بندی حرکات توده ای مواد در حوضه آبریز لیقوان چای. فصلنامه مدرس علوم انسانی. ویژه نامه جغرافیا. دوره دهم. پیاپی 48.صص 145-125
  • موسوی، سیده مریم (1395). مقایسه روشهای کوپل و یکبعدی مدلسازی سیلاب در رودخانه های جاری در دشتها با استفاده از نرم افزار "MIKE". پایان یانامه کارشناسی ارشد. دانشگاه شهید چمران اهواز. دانشکده مهندسی علوم آب.
  • هلالات ناصریان، حسین؛ محمد عامل صادقی؛ حسین علی واعظی پور و سامان سیف،( ۱۳۹۲ ). مدلسازی جامع سیلاب منطقه دشتیاری شهرستان چابهار و ارائه طرح علاج بخشی سیل در منطقه، هفتمین کنگره ملی مهندسی عمران، زاهدان، دانشگاه سیستان و بلوچستان.
    • Bates, P. D., Lane, S. N., Ferguson R. I. (2005). Computational Fluid Dynamics: Applications in Environmental Hydraulics. Chichester, England: John Wiley & Sons, Ltd.
    • DHI: Danish Hydraulic Institute (DHI), MIKE 11 Environmental Hydraulics, Reference Manual, Horsholm, Denmark, 2007.
    • De Moel, H., van Alphen, J. and Aerts, J.C.J.H.: Flood maps in Europe - Methods, availability and use, Natural Hazards and Earth System Science, 9(2), 289-301, 2009.
    • Enzel, Y., Ely, L.L., House, P.K., Baker, V.R., Webb, R.H., 1993. Palaeo flood evidence for a natural upper bound to flood magnitudes in the Colorado River basin. Water Resour. Res. 29, 2287–2297.
    • Hardy, R. J., Bates, P. D. and M. G. Anderson. 1999. The importance of spatial resolution in hydraulic models for floodplain environments. Journal of Hydrology, 216: 124–136.
    • Haldar, Raktim. Khosa, Rakesh.(2015). Flood Level Mitigation Study using 1-D Hydrodynamic Modeling. INTERNATIONAL CONFERENCE ON WATER RESOURCES, COASTAL AND OCEAN ENGINEERING (ICWRCOE 2015) P925 – 932
    • Kadam, Prashant. Sen, Dhrubajyoti.(2012).Flood inundation simulation in Ajoy River using MIKEFLOOD. ISH Journal of Hydraulic Engineering, 18:2, 129-141
    • Kourgialas, N. N. Karatzas, G. P.(2014). A hydro-sedimentary modeling system for flash flood propagation and hazard estimation under different agricultural practices. Natural Hazards and Earth System Sciences. 14, 625–634,
    • Kleinen, T. and Petschel-Held, G.: Integrated assessment of changes in flooding probabilities due to climate change, Climatic Change, 81(3-4), 283-312, 2007.
    • Kourgialas, N.N., Karatzas, G.P.: A hydro-economic modelling framework for flood damage estimation and the role of riparian vegetation, Hydrological Processes, 27(4), 515-531, 2013.
    • Patro, S., Chatterjee, C., Mohanty, S., Singh, R., Raghuwanshi, N. S. (2009). "Flood Inundation Modeling using MIKE FLOOD and Remote Sensing Data." Indian Soc. Remote Sens. 37: 107-118.
    • Plate, E.: Flood risk and flood management, Journal of Hydrology, 267(1-2), 2-11, 2002.
    • Pramanik, N., Panda, R., Sen, D.: One dimensional hydrodynamic modeling of river flow using DEM extracted river cross-sections, Water Resources Management, 24, 835-852, 2010.
    • Pratyasha Jena, Prachi. Chatterjee, Chandranath.(2016). Assessment of Cartosat-1 DEM for Modeling Floods in Data Scarce Regions. Water Resour Manage DOI 10.1007/s11269-016-1226-9
    • Rungø, M., K.W. Olsen, 2003. Combined 1- and 2- dimensional flood modelling. Proceeding 4th Iranian Hydraulic Conference, 21-23 October, Shriraz, Iran.
    • Shaikh, Alfiya., Dixit, Pradnya., Bagade., Dnyanedo 2015. Application of MIKE 11 for Flood Forecasting (A Riew)International Journal of Modern Trends in Engineering. e-ISSN No.:2349-9745, Date: 2-4 July, 2015
    • Timbe, L., P. Willems, 2007. Performance of 1D and 2D hydrodynamic models for floodplain modelling. Proc. of the Int. Congress on Development Environmental and Natural Resources: Multi-level and Multi-scale Sustainability, 11-13 July, Cochabamba, Bolivia 1, 624-632.
    • Tayefi, V., Lane, S.N., Hardy, R.J., Yu, D., 2007. A comparison of one- and twodimensional approaches to modelling flood inundation over complex upland floodplains. Hydrol. Process. 21 (23), 3190–3202.
    • Tuteja, N. K., Shaikh, M. (2009). Hydraulic Modelling of the spatio-temporal flood inundation patterns of the Koondrook Perricoota Forest Wetlands - The Living Murray. 18th World IMACS / MODSIM Congress. Cairns, Australia.
    • Werner, M. G. F. (2004). Spatial flood extent modeling - A performance based comparison, Delft University, Netherlands. Ph. D. 1-102
    • Willems, P., Vaes, G., Popa, D., Timbe, L. and J. Berlamont. 2002. Quasi 2D river flood modelling, In: River Flow. 2002, D. Bousmar and Y. Zech (ed.), Swets & Zeitlinger, Lisse. 2: 1253-1259.
    • Wermer, M., S. Blazkova, J. Petr, 2005. Spatially distributed observations in constraining inundation modelling uncertainties. Hydrol. Process., 19, 3081-3096.
    • Wright, N. G., Villanueva, I., Bates, P. D., Mason, D. C., Wilson, M. D., Pender, G. and S. Neelz. 2008. Case study of the use of remotely sensed data for modeling flood inundation on the river Severn, U.K. Journal of Hydraulic Engineering, 134( 5): 533-540.