بررسی علل وقوع سیلاب و مخاطرات آن در حوضه آبریز زنوزچای با استفاده از مدل هیدرولوژیکی HEC-HMS و منطق فازی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه جغرافیای طبیعی (ژئومورفولوژی)، دانشگاه محقق اردبیلی، اردبیل، ایران

2 استاد گروه جغرافیای طبیعی (ژئومورفولوژی)، دانشگاه محقق اردبیلی.

3 استاد گروه جغرافیای طبیعی (ژئومورفولوژی)، دانشگاه تبریز.

چکیده

برای ارزیابی سیل‌خیزی حوضه مطالعاتی و شبیه‌سازی بارش- رواناب از مدل هیدرولوژیکی HEC-HMS و اکستنشن HEC-GeoHMS در بستر نرم‌افزار ArcGIS بهره گرفته شد. برای تهیه نقشه خطر سیلاب (سیل‌گیری) حوضه‌ی مطالعاتی 10 متغیر موثر بر وقوع سیلاب با کاربست منطق فازی در بستر سیستم اطلاعات جغرافیایی (GIS) ترکیب شدند. در راستای اهداف تحقیق از نقشه‌های زمین‌شناسی، تصاویر DEM، تصاویر ماهواره‌ای Sentinel-2 و Google Earth، نقشه گروه‌های هیدرولوژیک خاک، داده‌های اقلیمی و هیدرومتری همراه با هیدروگراف‌ها و هایتوگراف‌های حوضه مطالعاتی بهره گرفته شد. نتایج نشان‌دهنده کارایی بالای رویکرد مورد استفاده در شناسایی پهنه‌های سیل‌خیز و سیل‌گیر می‌باشد. مناطق سیل‌خیز منطبق بر زیرحوضه‌های قسمت‌های میانی حوضه آبریز زنوزچای می‌باشند. وجود سازندهای زمین‌شناسی و خاک‌های با نفوذپذیری اندک، شیب زیاد، فقدان یا ضعف پوشش گیاهی، زمان تمرکز و زمان تاخیر اندک از جمله مهم‌ترین دلایل بالا بودن رواناب و هدایت سریع رواناب‌های ناشی از بارش در این زیرحوضه‌هاست. پهنه‌های سیل‌گیر منطقه مطالعاتی عمدتا منطبق بر دشت‌های سیلابی مجاور آبراهه‌های اصلی و راس مخروط‌افکنه زنوزچای می‌باشند. مجاورت با رودخانه، شیب ملایم، تراکم زهکشی بالا، مقادیر پایین شاخص تحدب سطح زمین، مقادیر بالای شاخص عمق دره و به‌هم‌پیوستن دو آبراهه اصلی حوضه مطالعاتی، پخش سیلاب در این پهنه‌ها را مساعدت می‌کنند. وجود مناطق مسکونی در مجاورت آبراهه‌های اصلی منطقه و مکان‌گزینی تمامی یا بخشی از آنها بر روی دشت‌های سیلابی منطقه، خطرات ناشی از سیلاب را به طور قابل توجهی افزایش داده است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Causes and Hazards of flood in Zunuzchay Watershed Using HEC-HMS Hydrological Model and Fuzzy Logic

نویسندگان [English]

  • biuk fathalizadeh 1
  • Mousa Abedini 2
  • Masomeh Rajabi 3
1 Department of Physical Geography, University of Mohaghegh Ardebili
2 professor in Geomorphology, University of Mohaghegh Ardabili
3 Department of Physical Geography, University of Tabriz, Tabriz, Iran
چکیده [English]

Studying flood reasons and Its Risks in Zunuzchai Catchment Basin, Using HEC-HMS Hydrological Model and Fuzzy Logic
Extended abstract:
Introduction
Flood is considered as one of the most common and costly risk, which results in harsh physical, social and economic damages and causalities in urban and rural areas. Hence, evaluation of flood risks is of great importance in line with risk management of flood and its potential effects on human, ecosystem and natural resources. Flood hazard mapping and risk area delineation is a risk that can be achieved through integrated GIS and remote sensing applications. In this regard, preparing flood risk plans is one of the most important measures for flood risk management, which can be taken in the form of GIS. The main function of GIS is storing and connecting several digital data bases and different subjective layers, graphical representation of such data in the form of maps and examining connection way of the layers. These layers are the main key elements needed for flood risk management. The aim of the present research study is to examine flood risk in catchment basin of Zunuzchai. The study area has been located at East Azerbaijan Province (political-administrative zone of Maranad county). The study area is about 323 square KM, being located at geographical coordinates of 380 and 32’- 380 and 46’ northern width and 450 and 40’-450 and 59’Eastern length.
Materials and Methods
The ultimate goal of the present study is spatial evaluation of flood risk at Zunuzchai catchment basin. The data employed in this study are: topographical maps at scale of 1:500000, geographical maps at scale of 1:100000 (ref. Geology Organization of the country), area soil maps (ref. Regional Water Organizational of East Azerbaijan Province), Height Digital Elevation Model image obtained from ALOS-PALSAR satellite with spatial isolation power of 12.5 m, Sentinel-2 satellite images with spatial isolation power of 10m, Google earth satellite images, meteorological data along with data of registered spate (hyetograph) and hydrometric data along with floods hydrographs. In the present study, HEC-HMS along with HEC-GEoHMS hydrological modeling methods were used for evaluation and identification of flood-prone areas or areas with higher potential of changing rainfall to runoff. After entering the spatial data into the HEC-HMS model, other parameters of the model were determined. In this study, SCS curve number for losses, SCS unit hydrograph method for conversion, monthly constant for base flow and Muskingum method for flood routing were used.
This model is a mathematical model, which can restore amount, peak flow, and time of reaching peak flow through simulation of the catchment basin behavior. Moreover, for spatial evaluation of the study area flood potential, fuzzy overlay technique of subjective layers was used in GIS .
Results and discussion
Results of rainfall-runoff and fuzzy zoning of flood risk at Zunuzchai catchment basin might be summarized as follows:
-Although sub-basins with higher area have higher peak flow, there is not significant correlation between sub-basin area and peak flow amount. This shows that the role of other basin factors in runoff generation amount and its transfer manner is of great importance. In this regard, slope, land use, plant coverage and sub-basin form is of great importance due to higher influence on parameters such as permeability, rainfall loss, delay time and concentration time.
-Most of the downstream sub-basins have lower runoff generation power. Lower slope, higher permeability and plotted agricultural lands and gardens are among the main reasons of increased loss and decreased runoffs resulted from rainfall.
-Flood peak of Zunuzchai catchment basin for rainfalls with return period of 2 years (about 15 mm) is about 42 cubic meter per second, which increases to 129 cubic meter per second for rainfalls with return period of 10 year (30.4 mm). Such amount of flow does not cause such flood risk for residential areas in the floodplain. However, peak flow of flood for rainfalls with return period of 50 year and above reaches 200 cubic meter per second and even more. In case of not observing river privacy, especially in the downstream area, this might result in serious risk. The origins of such floods are upstream and middle-stream of the study basin.
-About 3.5% of the Zunuzchai catchment basin is in too high risk class, 7.3% is in high risk class, 10.4 is in normal risk class , 17.9% is in low risk class and 60.9% is in very low risk class. In fact, the major part of the study catchment basin in the upstream is at low and very low risk classes. This mainly can be related to high altitude, steep slope, higher plant coverage density, higher bulge, lower drainage density and less depth of valleys. The zones prone to flood have been distributed mostly at the downstream areas and also around main waterways in the middle parts of the study basin.
Conclusion
Findings of the study indicated higher efficiency of the employed approach in identification of flood-prone zones. The flood prone zones are in sub-basins of middle stream of Zunuzchai catchment basin. Presence of geological formations, soils with lower permeability, higher slope, lack of plant coverage or weak plant coverage, concentration time and less delay time are among the most important reasons of much runoff and rapid lead of runoffs caused by rainfall in this basin. Flood prone zones of the study area are mostly accordant to floodplains adjacent to the main waterways and Alluvial fan of Zunuzchai. From this point of view, about 11% of the study basin is in too high risk and high risk classes. Adjacency to river, gentle slope, higher drainage density, lower values of the land bulge index, and higher values of valley depth index and joining the two main waterways in the study basin facilitate flood spread in these zones. Presence of residential areas adjacent to the main waterways of the area and whole or partial location of them on the floodplains has increased risk of flood, considerably.

کلیدواژه‌ها [English]

  • flood
  • HEC-HMS model
  • GIS
  • Fuzzy logic
  • Zenoschai Catchment Basin
  • امیراحمدی، ا.، و شیران، م.، 1388. کاربرد مدل HEC-HMS در تحلیل حساسیت متغیرهای ژئومورفولوژی موثر بر سیلاب دشت کرون، فصلنامه علمی- پژوهشی جغرافیا و توسعه، دوره 7، شماره 16، صص 173-153.
  • جعفرنیا، ج.، و امامقلی­زاده، ص.، 1392. برآورد سیلاب حوضه آبریز رودخانه تلار (زیرحوضه کسیلیان) با استفاده از مدل HEC-HMS، کنفرانس ملی مدیریت سیلاب.
  • حجازی­زاده، ز.، حسینی، ع.ر.، و شادفر، ص.، 1395. مکان­یابی سطوح موثر بر دبی اوج سیل به منظور برنامه­ریزی و مهار سیل با استفاده از مدل HEC-HMS (مطالعه موردی حوضه آبخیز طالقان)، جغرافیا (فصلنامه علمی- پژوهشی و بین­المللی انجمن جغرافیای ایران)، دوره جدید، سال چهاردهم، شماره 51، صص 31-41.
  • حسین­زاده، م.م.، و ایمنی، س.، 1395. مدل­سازی هیدرولوژیکی حوضه آبخیز قوچک - رودک با استفاده از مدل HEC-HMS، پژوهش­های دانش زمین، سال هفتم، شماره 25، صص 31-43.
  • شریفی پیچون، م.، و پرنون، ف.، 1397. ارزیابی و تحلیل فضایی سیل­گیری رودخانه قره­سود با استفاده از منطق فازی در محیط GIS، مجله مخاطرات محیط طبیعی، دوره هفتم، شماره 15، صص 17-30.
  • طاهری تیزرو، ع.، پاکدل خسمخی، ح.، معروفی، ص.، و وظیفه دوست، م.، 1395. تلفیق مدل­های HEC-HMS و GLDAS در تخمین رواناب مناطق فاقد آمار، مجله پژوهش­های حفاظت آب و خاک، دوره 23، شماره 4، صص 118-101.
  • مدرسی، ف.، و عراقی­نژاد، ش.، 1396، آموزش کاربردی مدل سازی هیدرولوژیکی حوضه آبخیز در HEC-HMS، انتشارات نشر نوآور.
  • مرادنژادی، م.، جورغلامی، م.، و ملکیان، ا.، 1394. بررسی کارایی مدل هیدرولوژیک HEC-HMS در شبیه­سازی هیدروگراف سیلاب حوضه­های آبخیز جنگلی (مطالعه موردی: جنگل خیرود)، نشریه جنگل و فراورده­های چوب (مجله منابع طبیعی ایران)، دوره 68، شماره 3، صص 639-625.
  • مؤمنی، م.، 1378، مباحث نوین تحقیق در عملیات، چاب دوم، تهران، دانشکده­ی مدیریت دانشگاه تهران.
  • Alcántara-Ayala, I. and Goudie, A. S., 2010. Geomorphological Hazards and Disaster Prevention. Cambridge University Press.
  • Avery Bick, I., Bardhan, R. and Beaubois, T., 2018. Applying fuzzy logic to open data for sustainable development decision‑making: a case study of the planned city Amaravati. Natural Hazards, Volume 91, Issue 3, pp 1317–1339.
  • Badilla, R. A., 2008. Flood Modelling in Pasig-Marikina River Basin. Thesis. International Institute for Geo-Information Science and Earth Observation, Netherlands.
  • Chadee, D.D., Sutherland, J.M. and Agard, J., 2014. Flooding and climate change, sectorial impacts and adaptation strategies for the Caribbean region. Nova Science Publishers, Inc.
  • Esri., 2019. ArcGIS Desktop Help.
  • Few, R., Ahern, M., Matthies, F. and Kovats, S., 2004. Floods, Health and Climate Change: A Strategic Review. Tyndall Centre Working Paper 63.
  • Hongming, H., Zhou, J., Peart, M. R., Chen, J. and Zhang, Q., 2012. Sensitivity of hydrogeomorphological hazards in the Qinling Mountains, China, Quaternary International, v. 282, p. 37-47.
  • Hydrologic Engineering Center., 2013. HEC-GeoHMS, geospatial hydrologic modeling extension. US Army Corps of Engineers.
  • Hydrologic Engineering Center., 2016. Hydrologic modeling system HEC-HMS. US Army Corps of Engineers.
  • Jia, J., Wang, X., A. M. Hersi, N., Zhao, W. and Liu, Y., 2019. Flood-risk zoning based on analytic hierarchy process and fuzzy variable set theory. Natural Hazards Review 20(3): 2-8.
  • Jiang, W., Deng L., Chen, L., Wu, J. and Li, J., 2009. Risk assessment and validation of flood disaster based on fuzzy mathematics. Progress in Natural Science 19, 1419–1425.
  • Kafle T., Hazarika, M., Shrestha, K., Prathumchai, K. and Samarakoon, L., 2006. Integration of remote sensing and GIS with flood simulation model for flood hazard mapping in the Bagmati River, Nepal. Proceedings of the 5th International Symposium on New Technologies for Urban Safety of Mega Cities in Asia, Phuket, Thailand.
  • Khanna, R. K., Agrawal, C. K. and Kumar, P., 2006. Remote Sensing and GIS applications in flood management. Proceedings of the India Disaster Management Congress, New Delhi. pp. 11.
  • Martin, O., Rugumayo, A. and Ovcharovichova, J., 2012. Application of HEC HMS/RAS and GIS tools in flood modelling: a case study for river Sironko- Uganda. Global journal of engineering, design & technology, Vol. 1(2): 19-31.
  • Meyer, V., Haase, D. and Scheuer, S., 2009. A Multicriteria Flood Risk Assessment and Mapping Approach. In: Flood Risk Management: Research and Practice. Allsop, W., Samuels, P., Harrop, J. and Huntington, S. (Editors). Taylor and Francis Group, London, pp. 1687-1693.
  • Pradhan, B., 2009. Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. Journal of Spatial Hydrology. Vol. 9, No.2, 1-18.
  • Rashetnia, Samira., 2016. Flood Vulnerability Assessment by Applying a Fuzzy Logic Method: A Case Study from Melbourne. Thesis submitted in fulfilment of the requirements for the degree of Master of Engineering, College of Engineering and Science, Victoria University, Melbourne, Australia.
  • United States General Accounting Office (GAO)., 2004. Flood Map Modernization. Report GAO-04-417. http://www.gao.gov/cgi-bin/getrpt?GAO-04-417.
  • van der Sande, C. J., de Jong, S. M. and de Roo A. P. J., 2003. A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment. International Journal of Applied Earth Observation and Geoinformation, Volume 4, Issue 3, Pages 217-229.
  • Wallingford, H. R., 2007. GIS -based Multicriteria Analysis as Decision Support in Flood Risk Management. Report number T10-07-07, FLOODsite Consortium, UK. Available on: www.floodsite.net (Last accessed on 25 April 2010).
  • World Water Assessment Programme (WWAP)., 2006. The 2nd UN World Water Development Report: Water, a Shared Responsibility. UNESCO and Berghahn Books. Paris and New York.