بررسی حساسیت سیل‌خیزی حوضه های آبریز با استفاده از شاخص‌های هیدروژئومورفیک (مطالعه موردی: حوضه آبریز الندچای، شمال غرب ایران)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استاد گروه ژئومورفولوژی، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز.

2 دانشیار گروه ژئومورفولوژی، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز.

3 دانشیار گروه سنجش‌ازدور و GIS، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز.

4 دانشجوی دکتری ژئومورفولوژی، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز .

10.22034/gmpj.2020.118241

چکیده

تحقیق حاضر تلاش کرده است تا نقش شاخص‌های هیدروژئومورفیک را در حساسیت سیل‌خیزی حوضه آبریز الندچای مورد تجزیه‌وتحلیل قرار دهد. برای نیل به این هدف ابتدا منطقه مورد مطالعه بر اساس خصوصیات توپوگرافی و زهکشی و با استفاده از مدل رقومی ارتفاعی (DEM) با قدرت تفکیک مکانی 5/12 متر به 15 زیر حوضه تقسیم شد. سپس اطلاعات هر یک از زیر حوضه‌ها بر اساس 22 پارامتر هیدروژئومورفیک از سه جنبه خصوصیات شبکه زهکشی، ویژگی‌های شکلی و خصوصیات برجستگی در محیط نرم‌افزار ArcGIS تهیه شدند. در مرحله بعد جهت وزن دهی پارامترها از روش تصمیم‌گیری MACBETH استفاده شده و وزن دهی پارامترها در محیط نرم‌افزار M-MACBETH انجام شد. نتایج وزن دهی نشان داد که در بین پارامترهای شبکه زهکشی چهار پارامتر بافت زهکشی، نسبت بافت، تراکم زهکشی و نسبت انشعاب به ترتیب با ضرایب 96/16، 84/13، 49/13 و 46/12 درصد و سه پارامتر مساحت، ضریب فشردگی و نسبت مدور بودن به ترتیب با ضرایب 63/29، 78/27 و 37/20 درصد در بین پارامترهای شکلی و دو پارامتر برجستگی و شیب با ضرایب 75/43 و 25/31 درصد در بین پارامترهای برجستگی بیشترین اهمیت را داشته‌اند. اولویت‌بندی زیر حوضه‌ها ازنظر حساسیت سیل‌خیزی نیز نشان داد که از 15 زیر حوضه تعداد 3 زیر حوضه (زیر حوضه‌های 1، 2 و 3) در طبقه خیلی زیاد، 4 زیر حوضه (زیر حوضه‌های 4، 9، 11 و 15) در طبقه زیاد، زیر حوضه‌های 7، 12 و 14 در طبقه متوسط، سه زیر حوضه 5، 8 و 10 در طبقه کم و زیر حوضه‌های 6 و 13 در طبقه خیلی کم قرار دارند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Study of Hydrogeomorphic Indices in Flood Sensitivity (Case study: Aland Chai Basin, Northwest of Iran)

نویسندگان [English]

  • Mohammad Hossein Rezaei Moghaddam 1
  • Asadollah Hejazi 2
  • Khalil Valizadeh Kamran 3
  • Tohid Rahimpour 4
1 Dept of Geomorphology, University of Tabriz
2 Dept of Geomorphology,, Faculty of Planning and Environmental Sciences
3 University of Tabriz
4 PhD student in Geomorphology, Department of Geomorphology, Faculty of Planning and Environmental Sciences, University of Tabriz, Tabriz, Iran
چکیده [English]

Introduction
Flood is a disaster that causes a lot of economic damages to farmlands, forests, gas and power transmission lines, roads, engineering structures and buildings. This study has attempted to analyze the role of hydrogeomorphic indices in flood sensitivity of Aland Chai Basin in the northwest of Iran. To achieve this aim, the study area was first divided into 15 sub-basins based on topographic and drainage characteristics using a digital elevation model (DEM) with 12.5m spatial resolution. Then, Hydrogeomorphic parameters of sub-basins have been studied from three aspects of drainage network characteristics (Such as Stream order, Streams number, Streams length, Stream frequency, Bifurcation ratio, Length of overland flow, Drainage density, Drainage texture, Texture ratio, Infiltration Number, Constant of channel maintenance, and Rho Coefficient), shape characteristics (Including Basin area, Compactness coefficient, Circulatory ratio, Elongation ratio, Form factor, and Shape Factor) and relief Properties (Relief, Relief ratio, Ruggedness number, and Gradient). Hydrogeomorphic analysis plays an important role in the analysis of hydrological behavior of the basins, especially in basins that lack information.
Methodology
Aland Chai basin is located between 38, 30´ and 38, 48´ latitude and between 44, 15´ and 45, 01 longitude in the north of the West Azerbaijan province, Iran. This basin has an area of 1147.30 km2 and it is situated in the north-western part of Iran. Basin elevation variations are from 1093m in the Aland Chai River bed to 3638m above sea level in the Avrin Mountain. The main river of this basin is Aland Chai, which is one of the most important rivers of Khoy city. This basin is one of the sub basins of the Aras River basin, which surface water flows into the Aras River after joining the Qotour River. MACBETH Multi-Criteria Decision Analysis Model was used to weight the parameters and the weighting of the parameters was performed in M- MACBETH software. Bana e Costa, Vansnick, and De Corte firstly proposed MACBETH method in 1990s. The MACBETH method (Measuring Attractiveness through a Categorical Based Evaluation Technique) is based on the additive value model and aims to support interactive learning about the evaluation problem and the elaboration of recommendations to prioritize and select options in individual or group decision making processes. It helps to rank the alternatives based on aggregated value of relative weighted attractiveness of alternatives under the decision criteria. MACBETH method uses 7‐semantic scale (No, very weak, weak, moderate, strong, very strong, and extreme), which is an ordinal scale.
Results and discussion
In the first step, the information of each sub-basin was obtained based on 22 hydrogeomorphic parameters from three aspects of drainage network characteristics, shape characteristics and relief Properties in ArcGIS software. These parameters were prepared using the geomorphological laws of Horton, Schumm, and Strahler. In the next step, all necessary weights were calculated for factors and Sub-basins using MACBETH method. The weighting results showed that among the characteristics of the drainage network four parameters of drainage texture, texture ratio, drainage density and bifurcation ratio with coefficients of 16.96, 13.84, 13.49 and 12.46 percent and three parameters, area, compactness coefficient, and Circulatory ratio with coefficients of 29.63, 27.78 and 20.37 percent among the shape parameters respectively, and two parameters of relief and slope with coefficients of 43.75 and 31.25 percent among the relief Properties were the most important parameters. On the other hand, parameters of Rho Coefficient, Shape Factor, Constant of channel maintenance, and Infiltration Number with coefficients of 0.35, 1.85, 2.42, and 3.11 had the least weight.
Conclusion
Floods usually start abruptly and cause irreparable damage in a short period of time. In this study, an attempt was investigated to analyze the role of hydrogeomorphic indices in flood sensitivity of Aland Chai Basin. Based on the effective parameters, flood occurrence inside of Aland Chai basin could be separated into 5 distinguished classes, from very high to very low flood susceptibility. Sub-basins ranking in terms of flood risk sensitivity based on final weights obtained from MACBETH method showed that sub-basins 1, 2, and 3 have the highest ranking and have very high sensitivity to flooding. These sub-basins comprise 286.67 km2 (24.98%) of basin area. Sub-basins 4, 9, 11, and 15 are also highly susceptible to flooding. Also sub-basins 6 and 13 have very low susceptibility toward flood occurrence. In total, about 45% of the study area has high flood sensitivity. Therefore, according to the results of the study, it is necessary to take protective measures such as watershed planning and dam construction in the sub-basins that are highly sensitive to prevent flooding or reduce potential damages in case of flooding.

کلیدواژه‌ها [English]

  • Flooding
  • hydrogeomorphic
  • MACBETH
  • GIS
  • Aland Chai Basin
  • حلبیان، امیرحسین؛ عسگری، شمس الله، 1396، پهنه‌بندی شدت سیل‌خیزی در حوضه‌ی آبریز میشخاص به کمک تحلیل عاملی- خوشه‌ای، هیدروژئومورفولوژی، شماره 12: صص 177-153.
  • رضائی مقدم، محمدحسین؛ نیکجو، محمدرضا؛ یاسی، مهدی؛ رحیمی، مسعود، 1396، تحلیل ژئومورفولوژیکی مجرای رودخانه قره‌سو با استفاده از مدل سلسله مراتبی رزگن (پایین‌دست سد سبلان تا تلاقی رودخانه اهر چای)، پژوهش‌های ژئومورفولوژی کمی، سال ششم، شماره 2، صص 14-1.
  • روستائی، شهرام؛ موسوی، رمضان؛ علیزاده گرجی، غلامرضا، 1396، تهیه نقشه پهنه‌بندی سیلاب حوضه آبخیز نکارود با استفاده از مدل SCS-CN و GIS/RS، پژوهش‌های ژئومورفولوژی کمی، سال ششم، شماره 1، صص 118-108.
  • قضاوی، رضا؛ بابایی حصار، سحر؛ عرفانیان، مهدی، 1398، اولویت‌بندی زیرحوزه‌های شهری مستعد سیلاب با استفاده از تکنیک PCA به عنوان یک روش جدید وزن دهی، مجله مخاطرات محیط طبیعی، شماره 20، صص 100-83.
    • Abuzied, S., Yuan, M., Ibrahim, S., Kaiser, M., Saleem, T., 2016. Geospatial risk assessment of flash floods in Nuweiba area, Egypt, Journal of Arid Environments, 133: 54-72. http://dx.doi.org/10.1016/j.jaridenv.2016.06.004.
    • Angillieri, M. Y. E., 2012. Morphometric characterization of the Carrizal Basin applied to the evaluation of flash floods hazard, San Juan, Argentina, Quaternary International, 253: 74-79.
    • Bana e Costa, C. A., De Corte, J. M., Vansnick, J. C., 2005. On the Mathematical Foundations of MACBETH. Criteria Decision Analysis: State of the Art Surveys, New York: Springer, pp 409-437.
    • Bana e Costa, C. A., De Corte, J. M., Vansnick, J. C., 2012. MACBETH. International Journal of Information Technology and Decision Making, 11(2): 359–387. https://doi.org/10.1142/S0219622012400068.
    • Bhagwat, T.N., Shetty, A., Hegde, V.S., 2011. Spatial variation in drainage characteristics and geomorphic instantaneous unit hydrograph (GIUH); implications for watershed management—A case study of the Varada River basin, Northern Karnataka, Catena, 87: 52-59. http://dx.doi.org/ 10.1016/j.catena.2011.05.007.
    • Bisht, S., Chaudhry, S., Sharma, S., Soni, S., 2018. Assessment of flash flood vulnerability zonation through Geospatial technique in high altitude Himalayan watershed, Himachal Pradesh India, Remote Sensing Applications: Society and Environmen, 12: 35-47. https://doi.org/10.1016/j.rsase.2018.09.001.
    • Borga, M., Boscolo, P., Zanon, F., Sangati, M., 2007. Hydrometeorological analysis of the August 29, 2003 flash flood in the eastern Italian Alps, J Hydrometeorol 8(5): 1049–1067.
    • Chandrashekara, H., Lokesh, K.V., Sameena, M., Roopa, J., Ranganna, G., 2015. GIS –Based Morphometric Analysis of Two Reservoir Catchments of Arkavati River, Ramanagaram District, Karnataka, INTERNATIONAL CONFERENCE ON WATER RESOURCES, COASTAL AND OCEAN ENGINEERING (ICWRCOE 2015), doi: 10.1016/j.aqpro.2015.02.175.
    • Costa, E., 1987. Hydraulics and basin morphometry of the largest flash floods in the conterminous United States, Journal of Hydrology, 93(3-4): 313–338.
    • Creutin, JD., Borga, M., 2003. Radar hydrology modifes the monitoring of flash-flood hazard, Hydrol Process, 17(7):1453–1456.
    • Das, S., 2018. Geographic information system and AHP based flood hazard zonation of Vaitarna basin, Maharashtra, India. Arab. J. Geosci, 11(19): 576. https://doi.org/10.1007/s12517-018-3933-4.
    • DeGaetano, AT., 2009. Time-dependent changes in extreme-precipitation return-period amounts in the continental United States, J Appl Meteorol Climatol, 48(10): 2086–2099.
    • Detoni, M., 1996. Application of multi criteria methodology for decision support in defining features construction projects, MSc Dissertation, Federal University of Santa Catarina, Florianopolis, Brazil.
    • Doocy, S., Daniels, A., Packer, C., Dick, A., Kirsch, T.D., 2013. The human impact of earthquakes: a historical review of events 1980–2009 and systematic literature review. PLoS Curr. 5.
    • Faniran, A., 1968. The index of drainage intensity – a provisional new drainage factor. Australian Journal of Science, 31: 328–330.
    • Grohmann, C. H., 2004. Morphometric analysis in geographic information systems: Applications of free software GRASS and R Star, Computer and Geoscience, 30(10): 1055-1067.
    • Hadely, R.F., Schumm, S.A., 1961. Sediment sources and drainage basin characteristics in upper Cheyenne River basin, United States Geological Survey water-supply paper, 1531-B. Washington, DC: US Government Printing Office, 137–196.
    • Horton, R. E., 1945. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology, Bulletin of the Geological Society of America, 56(3): 275–370.
    • Ifabiyi, I.P., Eniolorunda, N.B., 2012. Watershed characteristics and their implication for hydrologic response in the upper Sokoto basin, Nigeria, Journal of Geography and Geology. 4(2): 147.
    • Ishizakaa, A., Siraj, S., 2018. Are multi‐criteria decision‐making tools useful? An experimental comparative study of three methods, European Journal of Operational Research, 264(2): 462–471. https://doi.org/10.1016/j.ejor.2017.05.041.
    • Karande, P., Chakraborty, S., 2013. Using MACBETH method for supplier selection in manufacturing environment, International Journal of Industrial Engineering Computations, 4: 259–272.  https://doi.org/10.5267/j.ijiec.2013.01.002.
    • Karande, P., Chakraborty, S., 2014. A facility layout selection model using MACBETH method, Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management, January 7–9, Bali, Indonesia.
    • Kumar Rai, P., Narayan Mishra, V., Mohan, K., 2017. A study of morphometric evaluation of the Son basin, India using geospatial approach, Remote Sensing Applications: Society and Environment, 7: 9-20. http://dx.doi.org/10.1016/j.rsase.2017.05.001.
    • Mahmood, Sh., Rahman, A., 2019. Flash flood susceptibility modeling using geo- morphometric and hydrological approaches in Panjkora Basin, Eastern Hindu Kush, Pakistan, Environmental Earth Sciences, 78(43): 1-16, https://doi.org/10.1007/s12665-018-8041-y.
    • Melton, M.A., 1958. Correlations structure of morphometric properties of drainage systems and their controlling agents, Journal of Geology, 66: 442-460.
    • Mesa, L.M., 2006. Morphometric analysis of a subtropical Andean basin (Tucumam, Argentina), Environ Geol, 50(8): 1235–1242.
    • Nookaratnam, K., Srivastava, Y.K., Venkateswarao, V., Amminedu, E., Murthy, K.S.R., 2005. Check dam positioning by prioritization of micro-watersheds using SYI model and morphometric analysis - remote sensing and GIS perspective. Jour. Indian Soc. Remote Sens, 33(1): 25–38.
    • Patton, P.C., Baker, V.R., 1976. Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls, Water Resour Res, 12: 941–952.
    • Prasad, R. N., Pani, P., 2017. Geo-hydrological analysis and sub watershed prioritization for flash flood risk using weighted sum model and Snyder’s synthetic unit hydrograph, Modeling Earth Systems and Environment, 3(4): 1491–1502. https://doi.org/10.1007/s40808-017-0354-4.
    • Schumm, S. A., 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5): 597–646. http://dx.doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2.
    • Shulits, S., 1968. Quantitative formulation of stream and watershed morphology, Bulletin of the International Association of Scientifc Hydrology, 3: 201–207.
    • Strahler, A.N., 1964. Quantitative geomorphology of drainage basin and channel networks, Handbook of applied hydrology.
    • Suresh, M., Sudhakar, S., Tiwari, K. N., Chawdary, V. M., 2005. Prioritization of watershed using morphometric parameters and assessment of surface water potential using RS, Journal of the Indian Society of Remote Sensing, 32: 1-11.
    • Termeh, S.V.R., Kornejady, A., Pourghasemi, H.R., Keesstra, S., 2018. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Sci. Total Environ, 615: 438–451.
    • Verstappen, H., 1983. The applied geomorphology, Enschede (The Netherlands): International Institute for Aerial Survey and Earth Science (ITC).