بررسی ارتباط برف-پوش (SC) و دمای سطح زمین (LST) با مولفة توپوگرافیکی ارتفاع در ارتفاعات البرز مرکزی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار، گروه جغرافیا، دانشگاه پیام نور، تهران، ایران

2 دکتری ژئومورفولوژی، دانشگاه آزاد اسلامی لنجان، اصفهان، ایران.

10.22034/gmpj.2020.118243

چکیده

پهنه­های دارای پوشش برف (SC) و دمای سطح زمین (LST) و نوسانات و تعییرات آنها در طبقات ارتفاعی مختلف، در بررسی­های اکولوژیکی مهم است. یکی از واحد­های کوهستانی اصلی کشور ایران، البرز مرکزی است. در این پژوهش ارتباط SC و LST و ارتفاع در این واحد در بازه­های ماهانه، فصلی و سالانه بررسی شد. بدین منظور از داده­های ماهوارة ترا و آکوا در بازة 2003 تا 2018 استفاده شد. ارتباط واضحی بین افزایش ارتفاع و افزایش SC در ارتفاعات البرز مرکزی مشاهده شد. ارتباط این دو مولفه، مستقیم بوده که البته تغییرات آن در باند­های ارتفاعی مختلف متفاوت است. دو آستانة ارتفاعی مشخص در البرز مرکزی مشاهده شد که نخست در ارتفاع 1000 و دیگری در 4000 متری قرار دارد. SC تا ارتفاع 1000 متری با افزایش ارتفاع به طورملایم افزایش می­یابد و بعد از آن شیب افزایش SC با ارتفاع تشدید می­گردد. بعد از ارتفاع 4000 متری مجدداً شیب تغییرات ملایم می­گردد. تغییرات LST معکوس تغییرات SC است، و افزایش ارتفاع منجر به افت LST می­گردد، البته تا ارتفاع 1000 متری از این وضعیت استثنا بوده و افزایش ارتفاع باعث افزایش LST می­گردد که دلیل آن در تاثیر دریای خزر و رطوبت بالا در محدوده و کاهش تراکم پوشش گیاهی تا این ارتفاع است. از ارتفاع 1000 متری به بالا روند کلی افزایش ارتفاع منجر به کاهش LST می­گردد. ارتفاع خط تعادل دمای سطح زمین و برف-پوش  (ELALS) که ارتفاعی است که در آن LST و SC به تعادل می­رسند، در دورة آمای مورد بررسی در تراز 2800 متری قرار دارد. حداقل تراز ELALS در فصل زمستان در ارتفاع 1740 قرار دارد. این نمایة محیطی در فصول و ماه­های سرد گرایش به تراز­های ارتفاعی پائین و در فصول گرمتر تمایل به ارتفاعات بالاتر دارد. در نهایت این نمایة محیطی قابلیت استفاده در مطالعات اکولوژیک چشم انداز­های کوهستانی را دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Snow-cover and Land Surface Temprature investigation, related to the Elevation as a Topographic Factor in the Central Alborz Mountain*

نویسنده [English]

  • sina solhi 2
2 Lenjan Azad University, Isfahan, Iran.
چکیده [English]

Extended Abstract
Abstract
The area covered by snow (SC) and land surface temperature (LST) and their fluctuations in different altitudes of a mountain unit are important in climatic, hydrological and water and ecological resources management. In this study, the relationship between SC and LST in this mountainous unit was examined in monthly, seasonal and annual intervals. For this purpose, Terra and Aqua Satellite image data which are carrying Modis sensor, used in temporal range of 2003-2018.In all time periods studied, a clear relationship between elevation and SC, was observed in the Central Alborz highlands. The relationship between these two environmental indicators are direct, although the rate of change varies on different altitudes. Two specific height thresholds were observed in Central Alborz, the first threshold being at an altitude of 1000 meters and the other at 4000 meters. So that the SC rises to a height of 1000 meters with increasing altitude. After an altitude of 4,000 meters, the slope changes again and starts to decrease. LST variations are the opposite of SC. In general, increasing the height leads to a decrease in LST, but, up to 1000m is an exception to this rule, and increasing the height will increase the LST.
Introduction
The area covered by snow (SC) and land surface temperature (LST) and their fluctuations in different altitudes of a mountain unit are important in climatic, hydrological and water and ecological resources management. Snow cover and land surface tempratue distribuations on different elevational class would be important from the view point of environmental systems and ecosystems observations and management. One of the major mountainous unit in Iran, which is supplying many human population, is the Central Alborz mountain, located in the northern boundary of Iran.
Methodology
In this study, the relationship between SC and LST in this mountainous unit was examined in monthly, seasonal and annual intervals. For this purpose, Terra and Aqua Satellite image data with spatial resolusion of 50m which are carrying Modis sensor, used in temporal range of 2003-2018.
Digital Surface Model released by the Japan Aerospace Exploration Agency (JAXA) deployed the Advanced Land Observing Satellite (ALOS) between January 2006 and May 2011, used in this research. This data have spatial resolusion of 1 arc secound (~30m) and a vertical RMSE of 4.4 m. and now is one of the most accurate dataset with global coverage and free of charge.
Results and discussion
In all time periods studied, a clear relationship between elevation and SC, was observed in the central Alborz highlands. The relationship between these two environmental indicators are direct, although the rate of change varies on different altitudes. Two specific height thresholds were observed in Central Alborz, the first threshold being at an altitude of 1000 meters and the other at 4000 meters. So that the SC rises to a height of 1000 meters with increasing altitude. After an altitude of 4,000 meters, the slope changes again and starts to decrease. LST changes are the opposite of SC changes, in general, increasing the height leads to a decrease in LST of course, up to 1000 meters is an exception to this rule, and increasing the height will increase the LST. This is due to the cooling effect of the Caspian Sea and high humidity at altitudes below 1000 meters and also decreasing vegatation coveabdr density up to 1000m, which mainly includes the northern slopes of Alborz. Forests, forest-steppes and grasslands, are absorbing the sunrays energy and consume it in the process of photosynthesis, and so they prevents, the land surface temperature to be increased. In the highland of central Alborz (the elevation up to almost 1000m) lower humidity and vegetation cover in addition to the rocky surfaces, leads to the higher LSTs. From an altitude of 1000 meters and above, the general trend of increasing altitude leads to a decrease in LST in Central Alborz. Another environmental indicator was defined in this study, which was called the Equilibrium Line Altitude of Land surface Temperature and Snow Cover (ELALS). ELALS is a height at which LST and SC reach equilibrium. The annual average of this environmental index is in the hight of 2,800 meters during the study period in the Central Alborz highlands. The minimum level of ELALS in winter is 1740 meters above sea level. This environmental index tends to reach low altitudes in cold seasons and months and tends to higher altitudes in warmer periods of the year.
Conclusion
Finally, this environmental index can be used in geomorphological studies of glaciers, climates, water resources, hydrological management of basins and ecological studies of mountainous landscapes.

کلیدواژه‌ها [English]

  • Snow cover
  • Land surface Temperature
  • Height
  • Central Alborz
  • انتظامی، هیرش؛ علوی پناه، سید کاظم؛ درویشی بلورانی، علی؛ متین فر، حمیدرضا؛ چپی کامران، 1396، مقایسه دو روش  NDSIو LSUدر برآورد سطح برف به وسیله سنجنده MODIS مطالعه موردی: حوضه آبخیز سقز، پژوهشهای جغرافیای طبیعی، دوره 49، شماره 2، صص. 207-219.
  • خسروی، محمود؛ طاووسی، تقی؛ رییس پور، کوهزاد؛ امیدی؛ محبوبه، قلعه محمدی، 1396، بررسی تغییرات سطوح پوشش برف در ارتفاعات زردکوه بختیاری با استفاده از سنجش از دور، هیدروژئومورفولوژی، دوره 3، شماره 12، صص. 25-44.
  • عزیزی، قاسم؛ رحیمی، مجتبی؛ محمدی، حسین؛ خوش اخلاق، فرامرز، 1396، تغییرات زمانی-مکانی پوشش برف دامنه­های جنوبی البرز مرکزی، پژوهش­های جغرافیای طبیعی، دورة 49، شمارة 3، صص. 381-393.
  • فتاحی، ابراهیم؛ دلاور، مجید؛ الهه، قاسمی، 1390، شبیه سازی رواناب ناشی از ذوب برف در حوضه های کوهستانی با استفاده ی از مدل SRM (مطالعه موردی، حوضه آبریز بازفت)، نشریه تحقیقات کاربردی علوم جغرافیایی، دورة 20، شماره 23، صص. 129-141.
  • محمدی، پیمان؛ محمودی، احمد؛ خورانی، اسد الله، 1398، تغییرات پوشش برف در رشته­کوه زاگرس با استفاده از داده­های روزانة سنجندة مادیس، مجلة فیزیک زمین و فضا، دورة 45، شمارة 2، صص 355-371.
  • مسعودیان، سید ابوالفضل؛ کیخسروی کیانی، محمدصادق، 1396، ارزیابی تغییرات روزهای همراه با پوشش برف در گروه­های ارتفاعی حوضه زاینده رود، مخاطرات محیط طبیعی، سال ششم، دوره 6، شماره 11، صص. 33-46.
  • میریعقوب زاده، میرحسن؛ قنبرپور، محمدرضا، 1389، بررسی کاربرد نقشه های پوشش برفی حاصل از تصاویر ماهواره­ای مودیس در مدلسازی رواناب ذوب برف (مطالعه موردی، حوضه ابخیز سد کرج)، مجله علوم زمین، دورة 19، شماره 72، صص. 141-148.
  • وفاخواه، مهدی؛ محسنی، ساروی؛ محسن مهدوی، محمد؛ علوی پناه، کاظم، 1392، مقایسه سطح پوشش برف در تصاویر ماهواره­ای نوآ و سنجنده مودیس (مطالعه موردی: حوضه آبخیز طالقان)، مجله پژوهش های آبخیزداری،دورة 24،  شماره 92، صص. 8-94.
  • Akyürek, Z. and Sorman, A.Ü., 2002. Monitoring snow-covered areas using NOAA-AVHRR data in the eastern part of Turkey, Hydrological Sciences, 47, pp. 243-252.
  • Barnett, T.P., Adam, J.C., Lettenmaier, D.P., 2005. Potential impact of a warming climate on water availability in snow-dominated regions, Nature, 438, pp.303-309.
  • Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L.M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., Vincent, C., 2018. The European mountain cryosphere: a review of its current state, trends, and future challenges, Cryosphere, 12, pp.759-794.
  • Bormann, K.J., Brown, R.D., Derksen, C., Painter, T.H., 2018. Estimating snow-cover trends from space,  Nat. Clim. Chang. 8, pp.924-928.
  • Brown, R.D., 2000. Northern Hemisphere snow cover variability and change, Journal of Climate, 13, pp. 2339–2355.
  • Butt, M.J. And Bilal, M., 2011. Application of snowmelt runoff model for water resource management, Hydrological Processes, 25, pp.3735–3747.
  • Carlson, T. An Overview of the “Triangle Method” for Estimating Surface Evapotranspiration and Soil
  • Che, T., Li,X., Jin,R.,Armstrong, R. Andzhang, T., 2008. Snow depth derived frompassive microwave remote sensing data in China, Annals of Glaciology,49, pp.145–154.
  • EmreTekeli, E., Akyurek, Z., ArdaSorman, A., Sensoyc, A., and UnalSorman, A., 2005. Using MODIS Snow Cover Maps in Modeling Snowmelt Runoff Process in the Eastern Part of Turkey, Remote Sensing of Environment, 97,  pp.216-230.
  • Foster, J., Liston, G., Koster, R., Essery, R., Behr, H., Dumenil, L., Verseghy, D., Thompson, S., Pollard, D. And Cohen, J., 1996. Snow cover and snow mass intercomparisons of general circulation models and remotely sensed datasets. Journal of Climate 9(2), pp.409-426.
  • Foster, J., Sun, C., Walker, J.P., Kelly, R., Chang, A., Dong, J. And Powell, H., 2005. quantifying the uncertainty in passive microwave snow water equivalent observations, Remote Sensing of Environment, 94, pp.187-203.
  • Gupta, R.P., Haritashya, U.K., and Singh, P., 2005. Mapping Dry/Wet Snow Cover in Indian Himalayas using IRS Multispectural Imagery, Remote Sensing of Environment, 97, pp.458-469.
  • Hall, D.K., Riggs, G.A. And Salomonson, V.V., 1995. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data, Remote Sensing of Environment, 54, pp.127-140.
  • Hammond, J.C., Saavedra, F.A., Kampf, S.K., 2018. Global snow zone maps and trends in snow persistence 2001–2016. Int. J. Climatol, 38, pp.4369-4383.
  • Harshburger, B. Humes, K. Waldon, V. Blandford, T. Moore, B. Dezzani, R. 2010, Spatial interpolation of snow water equivalency using surface observations and remotely sensed images of snow-covered areas, Hydrological Processes, 24, pp.1285-1295.
  • Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R.S., Clague, J.J., Vuille, M., Buytaert, W., Cayan, D.R., Greenwood, G., Mark, B.G., Milner, A.M., Weingartner, R., Winder, M., 2017. Toward mountains without permanent snow and ice, Earth’s Future 5, pp.418-435.
  • Immerzeel, W. Droogers, P. Jong, S. Bierkens, M., 2009. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing, Remote Sensing of Environment, 113, pp.40-49.
  • Jain, S.K., Goswami, A. And Saraf, A.K., 2008. Accuracy assessment ofMODIS, NOAA and IRS data in snow cover mapping under Himalayan conditions, International Journal of Remote Sensing, 29, pp.5863-5878.
  • Jin, X. Ke, C. Xu, Y. Li, X., 2014. Spatial and temporal variations of snow cover in the Loess Plateau, China, International Journal of Climatology, 35(8), pp.1721-1731.
  • Ke, C. Liu, X., 2014. Modis-observed spatial and temporal variation in snow cover in Xinjiang, China, Climate Research, 59, pp.15-26.
  • Klein, A.G., Hall, D.K. And Nolin, A.W., 2000. Development of a prototype snow albedo algorithm for the NASA MODIS instrument. In 57th Eastern Snow Conference, 17-19 May 2000, Sysacuse, NY, USA, pp.143-158.
  • Kohler, T., Wehrli, A., Jurek, M., 2014. Mountains and climate change: A global concern. In: Centre for Development and Environment (CDE) (Ed.), Sustainable Mountain Development Series. Swiss Agency for Development and Cooperation (SDC) and Geographica Bernensia, Bern, Switzerland (136 pp).
  • Lemke, P., Ren, J., Alley, R.B., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R.H. And Zang, T., 2007. Observations: changes in Snow, ice and frozen ground. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L.Miller (Eds.), pp.337-384 (Cambridge and New York: Cambridge University Press).
  • Li, D., Wrzesien, M.L., Durand, M., Adam, J., Lettenmaier, D.P., 2017. How much runoff originates as snow in the western United States, and how will that change in the future?, Geophys. Res. Lett. 44, pp.6163-6172.
  • Lin, X.; Zhang, W.; Huang, Y.; Sun, W.; Han, P.; Yu, L.; Sun, F. Empirical Estimation of near-Surface Air
  • López-Burgos, V. , Gupta, H. , and Clark, M. , 2013. Reducing cloud obscuration of modis snow cover area products by combining spatio-temporal techniques with aprobability of snow approach, Hydrologyand Earth System Sciences, 17, pp.1809-1823.
  • Moisture from Satellite Imagery. Sensors 2007, 7, 1612–1629.
  • Mölg, N., Rastner, P., Irsara, L., Notarnicola, C., Steurer, C., and Zebisch, M., 2010. Multi-temporal modis snow cover monitoring over the alpine regions for civil protection applications, in 30th EARSel symposium, 31st May–3rd June.
  • Mote, P.W., Li, S., Lettenmaier, D.P., Xiao, M., Engel, R., 2018. Dramatic declines in snowpack in the western US, Climate and Atmospheric Science 1(2).
  • Nagler, T., Rott, H., and Malcher, P., 2008. Assimilation of Meteorological and Remote Sensing Data for Snowmelt Runoff Forecasting, Remote Sensing of Environment,112, pp.1408-1420.
  • Notarnicola C., 2020. Hotspots of snow cover changes in global mountain regions over 2000-2018, Remote Sensing of Environment 243(111781).
  • Parajka, J. and Blöschl, G., 2008. The value of modis snow cover data in validating and calibrating conceptual hydrologic models, Journal of Hydrology, 358, pp.240-258.
  • Peng, S., Piao, S., Ciais, P. And Fang, J., 2010. Change in winter snow depth and its impacts on vegetation in China, Global Change Biology, 16, pp.3004-3013.
  • Pepe,M., Brivio, P.A., Rampini, A., Rota Nodari, F. And Boschetti,M., 2005. Snow cover monitoring in Alpine regions using ENVISAT optical data, International Journal of Remote Sensing, 26, pp.4661-4667.
  • Pepin, N., Bradley, R.S., Diaz, H.F., Baraer, M., Caceres, E.B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M.Z., Liu, X.D., Miller, J.R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M.B., Williamson, S.N., Yang, D.Q., 2015. Elevation-dependent warming in mountain regions of the world,  Nat. Clim. Chang. 5, pp.424-430.
  • Plateau by Dynamically Integrating MODIS Lst Data. J. Geophys. Res. Atmos. 2016, 121, 11425–11441.
  • Pu, Z. Xu, L., 2009. MODIS/Terra observed snow cover over the Tibet Plateau: distribution, variation and possible connection with the East Asian Summer Monsoon, Theological and Applied Climatology, 97, pp.265-278.
  • Ramamoorthi, A.S., 1987. Snow Cover Area (SCA) is the Main Factor in Forecasting Snowmelt Runoff from Major River Basins, Proceedings of the Vancouver Symposium, IAHS Publ., 166, pp.187-197.
  • Rango, A., Salomonson, V.V., and Foster, J.L., 1977. Seasonal Stream Flow Estimation in the Himalayan Region Employing Meteorological Satellite Snow Cover Observations, Water Resources Research, 13, pp.109-112.
  • Saavedra, F.A., Kampf, S.K., Fassnacht, S.R., Sibold, J.S., 2018. Changes in Andes Mountains snow cover from MODIS data 2000-2016, Cryosphere 12, pp.1027-1046.
  • Surface Temperature Products. Remote Sens. Environ. 2013, 130, 62–73.
  • Temperature in China from MODIS Lst Data by Considering Physiographic Features. Remote Sens. 2016, 8.
  • Vikhamar, D. and Solberg, R., 2003. Snow-cover mapping in forests by constrained linear spectral unmixing of MODIS data, Remote Sensing of Environment, 88, pp.309-323.
  • Wang, X., Wu, C., Wang, H., Gonsamo, A., Liu, Z., 2017. No evidence of widespread decline of snow cover on the Tibetan Plateau over 2000-2015, Sci. Rep. 7, 14645.
  • Yang, J. Zhao, Z. Ni, J. Ren, L. Wang, Q., 2012. Temporal and spatial analysis of changes in snow cover in western Sichuan based on MODIS images, Journal of Earth Sciences, 55, pp.1329-1335.
  • Zhang, H.B.; Zhang, F.; Ye, M.; Che, T.; Zhang, G.Q. Estimating Daily Air Temperatures over the Tibetan
  • Zhang, Y. , Yan, S. , and Lu, Y., 2010. Snow cover monitoring using modis data in Liaoning Province, Northeastern China, Remote Sensing, 2, pp.777-793.
  • Zhao, H. and FERNANDES, R., 2009. Daily snow cover estimation from Advanced Very High Resolution Radiometer Polar Pathfinder data over Northern Hemisphere land surfaces during 1982–2004, Journal of Geophysical Research, 114, pp.1-14.
  • Zhu,W.; L˝ u, A.; Jia, S. Estimation of Daily Maximum and Minimum Air Temperature Using MODIS Land.