استفاده از روشی نوین در طبقه‌بندی چشم اندازهای ارضی در پهنة سرزمینی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد مدعو گروه سیستم اطلاعات مکانی و مخاطرات محیطی، واحد لنجان، دانشگاه آزاد اسلامی، اصفهان، ایران.

2 استادیار گروه سیستم اطلاعات مکانی و مخاطرات محیطی، دانشگاه آزاد اسلامی واحد لنجان، اصفهان، ایران

10.22034/gmpj.2021.236189.1189

چکیده

بخشی از مطالعات ژئومورفولوژی مختص شناسایی و تفکیک خودکار، نیمه خودکار و ارائة سیستم­های طبقه­بندی واحد­های فرمی زمین در مقیاس­های مختلف است. هر یک از سیستم­های چشم­انداز ارضی، خود در برگیرندة تعدادی واحد­های کوچک­تر یا لندفرم می­باشند. برخی روش­ها در مقیاس شناسایی و تفکیک لندفرم­ها عمل نموده و برخی به تفکیک و طبقه­بندی چشم­انداز­ه مبادرت نموده­اند. تفکیک­ چشم­انداز­های ارضی در طیف گسترده­ای از مطالعات ژئومورفولوژیک همچون تهیة نقشه­های ژئومورفولوژی، ارزیابی­ها و پهنه­بندی پتانسیل­های محیطی در زمینة ژئوتوریسم، بهره­برداری­ از محیط و توسعة پایدار، جغرافیای اقتصادی، ارزیابی مخاطرات محیطی، تنظیم سند آمایشی کشور و بسیاری بخش­های دیگر به طور مستقیم و غیر مستقیم دارای کاربرد است. در این پژوهش سعی شده است که یک سیستم نوین در طبقه­بندی چشم­انداز­های ارضی ارائه شود، که قابلیت تفکیک و طبقه­بندی چشم­انداز­های ارضی را با استفاده از مدل رقومی ارتفاعی و با در نظر گرفتن سادگی، داشته باشد. بدین منظور از مدل رقومی ارتفاعی سه مولفة ارتفاع، شیب و انحنای تانژانتی، پلان و نیمرخ، استخراج گردید، از میانگین این سه انحنا، انحنای متوسط استخراج گردید و این سه مولفه مبنای طبقه­بندی چشم­انداز­های اراضی قرار گرفت. در گام بعدی هر یک از سه مولفة فرم­شناسی فوق الذکر، بر اساس 5 روش آستانه­گذاری فواصل هندسی، چارکی، شکست­های طبیعی، انحراف معیار (باند اول تا چهارم) و روش میانگین وزنی  به دو بخش تفکیک گردید. سپس هر سه مولفه با یک سیستم ترکیبی، کد گذاری و عرصة سرزمین ایران به 8 واحد چشم­انداز ارضی طبقه­بندی گردید و نتایج به صورت نقشه­های پهنه­ای ارائه و تحلیل گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Using a New method in the Terrain Landscape Classification of Iran

نویسندگان [English]

  • sina solhi 1
  • Ghasem Khosravi 2
1 PhD of Geomorphology, Visiting Professor, Geographic Information System and Remote Sensing Department, Lenjan Branch, Islamic Azad university, Isfahan, Iran.
2 Assistant Professor, Geographic Information System and Remote Sensing Department, Lenjan Branch, Islamic Azad university, Isfahan, Iran.
چکیده [English]

Extended Abstract
Part of the studies of geomorphology is dedicated to the automated, semi-automated identification, segmentation and classification of landscapes and landforms at different scales. Each of the landscape classification systems, includes a number of smaller units or landforms. Some methods have been used to identify and recognize Landforms, while others have been dedicated to the landscape classifications. Landscape classification is applicable in a wide range of geomorphological studies such as, mapping geomorphological maps, zonation and environmental potential in the field of ecotourism, environmental exploitation and sustainable development, and also in the field of economic geography, natural hazard assessment and arranging the land use planning documents of the country and many other fields which is directly and indirectly applicable. In this study, an attempt has been made to present a new system in the landscape classification which be able to recognize and classify, landscapes of the terrain surface using, digital elevation models considering the ease and simplicity of the procedures. For this purpose, tangential, plan and profile curvature and slope extracted from digital elevation model, these three curvature combined together to get mean curvature and these factors including elevation, slope and mean curvature used to classify landscapes of the terrain. In the next step, each of the three components of the above-mentioned was divided into two parts based on 5 methods of thresholding, including: geometrical interval, quantile, natural breaks, standard deviation and weighted average. Finally, all three components have been coded and named with a special system and the area of the Iran, was classified into 8 landscapes units and the results were presented as a color map.
Introduction
The Earth's surface can be represented as a mosaic of different form units, each of which has its own form-specificity and process. The classification of these landscapes into smaller units is of great importance and, of course, has many applications in many different disciplines. In many definitions of the geomorphology the study and identification of land form units has been emphasized. Part of the geomorphological study is dedicated to the automated and semi-automated systems of landscapes and landform classifications at different scales. Each of the landscape systems includes a number of smaller units which is called landforms. Some methods have been used to identify and recognize Landforms, and some others have implemented to detect and classify landscapes. Terrain landscape recognition and classifications are used in a wide range of geomorphological studies such as preparation of geomorphological maps, assessments and zonation of environmental capacities in the field of ecotourism, environmental exploitation and sustainable development, in the field of economic geography, environmental risk assessment, regulation the country's planning programs and many other sections, which are directly and indirectly applicable. In this study, it is tried to identify, recognize and classify terrain landscapes by using a new approach, based on the three main relief components of elevation, slope and curvature.
Methodology
For classification of geomorphological landscapes in Iran, three morphological factors including: elevation, slope and mean curvature (combining plan, profile and tangential curvatures) implemented. As a result, these morphological components were used to define a new classification system. The elevation, slope and curvature of the terrain surface is obtained from digital surface model. All these factors are extracted from digital surface model with using moving window technique in the raster analysis environment. So a moving window of 3x3 in size implemented to calculate common slope algorithm in the field of geographical information system. In the next step, tangential, plan and profile curvature combined together to get mean curvature of the terrain surface whereas all these factors obtained from digital surface model in the same way. Then, each of these three form-components is divided into two classes. To determine the classification threshold (classes break) for all of the factors mentioned above, 5 thresholding methods including geometrical interval, natural breaks, quantile, standard deviation and weighted average had taken into account. From the combination of the three components of elevation, slope and curvature, each of which has two states, 8 units of landscapes were defined. Finally, 5 maps of Iran's geomorphological terrain landscapes, that each of them includes 8 landscape units, were implemented using Python programming and presented in the form of large-scale maps of Iran.
Results and discussion
Among the various methods used in the classification of terrain landscapes, geometric interval, quantile, natural break, and weighted average represent better results than the standard deviation method. In the first, third, and fourth standard deviation band thresholds, the results are not graphically appropriate, in contrast the second band of the standard deviation shows acceptable results. Natural breaks thresholding system, performs more sensitive in the higher values of the range whereas this point is visible in the output results. The quantile method offers similar results to the geometric interval, except that the geometric interval works more sensitive in the context of higher values in the variation range. Standard deviation methods generally do not show good performance in the classification of terrain landscape units, but in general, the second and third standard deviation bands provide better results. Finally, the results obtained from the weighted average method have acceptable performance and have a function among the methods of geometrical interval and natural breaks.
Conclusion
In the present study, the landscapes of the earth were classified with a new approach. In this system, some major morphological factors had taken into account. To determine the appreciate threshold, geostatistical thresholding methods used and the results of these methods, investigated. The classification of terrain landscapes with the combined system presented in this study, which is based on a completely morphological concepts, helps to improve the methods of classification of terrain landscapes in geomorphology and the results would be suitable to use in the field of environmental and land use planning. Terrain landscape classification, from the morphological point of view, is applicable in the field of potential ability of the environment, echological potentials of the landscapes and so on and could effectively increse the function of the geomorphology in this scope.

کلیدواژه‌ها [English]

  • Classification
  • landscape
  • Terrain
  • Iran
احمد آبادی، ع، 1397، استخراج و مشخصه سازی لندفرم ها با استفاده از تحلیل های چندمقیاسه و شی گرا: منطقه مورد مطالعه دامنه های شمالی سبلان، پایان نامة دکتری، به راهنمایی فریبا اسفندیاری درآباد و شهرام روستایی، دانشگاه محقق اردبیلی، اردبیل.
بهرامی، م، 1396، کاربرد تکنیکهای شیءگرای پردازش تصاویر ماهواره ای در شناسایی و طبقه بندی نیمه اتوماتیک لندفرمهای آتشفشانی و یخچالی(مطالعه موردی:کوهستان سهند)، پایان نامة کارشناسی ارشد جغرافیای طبیعی، به راهنمایی بختیار فیضی زاده و مشاورة معصومه رجبی، دانشگاه تبریز، تبریز.
بهشتی جاوید، ا، 1397، استخراج و مشخصه سازی لندفرم­ها با استفاده از تحلیل های چندمقیاسه و شی گرا: منطقه مورد مطالعه دامنه های شمالی سبلان، پایان نامة دکتری، به راهنمایی فریبا اسفندیاری درآباد و شهرام روستایی، دانشگاه محقق اردبیلی، اردبیل.
حسنی تبار، م، 1394، کاربرد پردازش شئ‌گرا تصاویر ماهواره‌ای در طبقه‌بندی خودکار اشکال ناهمواری‌ها (مطالعه موردی: حوضه آبریز شرق دریاچه ارومیه)، پایان نامة کارشناسی ارشد، رشتة جغرافیای طبیعی، به راهنمایی خلیل ولی­زاده کامران و میر اسدالله حجازی و مشاورة محمد حسین رضایی مقدم، دانشاه تبریز، تبریز.
رحمتی، ا، 1395، ارزیابی کارایی الگوریتم شیءگرا در طبقه‌بندی لندفرم‌های ژئومورفولوژیکی و مدل‌سازی استعداد وقوع آبکندها بر اساس تکنیک‌های داده‌کاوی RF، SVM، ME و BRT در حوزه آبخیز کشکان-پلدختر، پایان نامه دکتری مهندسی منابع طبیعی - آبخیزداری ، به راهنمایی ناصر طهماسبی­پور و علی حقی زاده، دانشگاه لرستان، خرم آباد.  
مکرم، م، نگهبان، س، 1393. طبقه­بندی لندفرم­های زمین با استفاده از شاخص موقعیت توگرافی (TPI)، مطالعة موردی: منطقة جنوبی شهرستان داراب، اطلاعات جغرافیایی سپهر، دوره 23، شماره 92، صص 57-65.  
مکرم، م، 1393. استفاده از روش فازی به منظور طبقه بندی لندفرم ها در ارتفاعات زاگرس، پایان نامة دکتری به راهنمایی عبدالله سیف و مشاورة دینش سازیامورثی ، دانشگاه اصفهان، اصفهان.
 
Banaei, M.H., 1993. A report on soil survey, Land classification and irrigation capability for a region located south of the Gorgan River. Tehran.
Burrough, P.A., Van Gaans, P.F.M. and MacMillan, R.A., 2000. High‐resolution landform classification using fuzzy k‐means, Fuzzy Sets and Systems, 113(1), pp.37-52.
Burrough, P.A., Wilson, J.P., Van Gaans, P.F.M. and Hansen, A.J., 2001. Fuzzy k‐means classification of topo‐climatic data as an aid to forest mapping in the Greater Yellowstone Area, USA, Landscape Ecology, 16, pp.523-546.
Chorley, R.J., Dunn, A.J. and Beckinsale, R.P., 1964. The History of the Study of Landforms. London.
Clarke, K.C., 1988. Scale‐based simulation of topographic relief, American Cartographer, 15, pp.173-181.
Conacher, A.J. and Dalrymple, J.B., 1977. The nine‐unit land surface model: An approach to pedogeomorphic research, Geoderma, 18, pp.1-154.
Dehn, M., Gartner, H. and Dikau, R., 2001. Principles of semantic modeling of landform structures, Computers and Geosciences, 27, pp.1005-1010.
Dikau, R., 1989. The application of a digital relief model to landform analysis. In: Raper, J.F. (Ed.), Three Dimensional Applications in Geographical Information Systems, Taylor & Francis, London, pp.51-77.
Dikau, R., 1990. Geomorphic landform modeling based on hierarchy theory. In: Brassel, K., Kishimoto, H. (Eds.), Proceedings of the 4th International Symposium on Spatial Data Handling, Department of Geography, University of Zürich, Zürich, Switzerland, pp.230-239.
Dikau, R., Brabb, E.E., Mark, R.M. and Pike, R.J., 1995. Morphometric landform analysis of New Mexico. Zeitschrift für Geomorphologie, 101, pp.109-126.
Drăguţ, L. and Eisank, C., 2012. Automated object‐based classification of topography from SRTM data, Geomorphology, 141, pp.21-33.
Etzelmüller, B. and Sulebak, J.S., 2000. Developments in the use of digital elevation models in periglacial geomorphology and glaciology, Physische Geographie, 41, pp.35-58.
Fels, J.E. and Matson, K.C., 1996. A cognitively based approach for hydro-geomorphic land classification using digital terrain models, In: Proceedings of the 3rd International Conference/Workshop on Integrating GIS and Environmental Modeling, Santa Fe, NM, January 21-25, 1996, National Centre for Geographic Information and Analysis, Santa Barbara, CA, USA.
Gallant, A.L., Douglas, D.B. and Hoffer, R.M., 2005. Automated mapping of Hammond’s landforms, IEEE Geoscience and Remote Sensing Letters, 2, pp.384-388.
Guzzetti, F. and Reichenbach, P., 1994. Toward the definition of topographic divisions for Italy, Geomorphology, 11, pp.57-75.
Hammond, E.H., 1964. Analysis of properties in land form geography: An application to broad‐scale land form mapping, Annals of the Association of American Geographers, 54, pp.11-19.
Hrvatin, M. and Perko, D., 2009. Suitability of Hammond’s method for determining landform units in Slovenia, Acta Geographica Slovenica, 49, pp.343-366.
Huggett, R., 1975. Soil landscape systems: A model of soil genesis, Geoderma, 13, pp.1-22.
Irvin, B.J., Ventura, S.J. and Slater, B.K., 1997. Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin, Geoderma, 77, pp.137-154.
Jenks, George F, and Fred Caspall., 1971. Error on Chloroplethic Maps: Definition, Measurement, and Reduction. Annals of the Association of American Geographers, 61(2), pp.217-244.
Jenks, George F., 1967. The Data Model Concept in Statistical Mapping, International Yearbook of Cartography, 7, pp.186-190.
Karagulle, D., Frye, C., Sayre, R., Breyer, S., Aniello, P., Vaughan, R. and Wright, D., 2017. Modeling global Hammond landform regions from 250 m elevation data, Transactions in GIS, 21, pp.1040-1060.
Leighty, R.D., 2001. Automated IFSAR Terrain Analysis System: Final Report, U.S. Army Aviation & Missile Command, Defense Advanced Research Projects Agency (DoD) Information Sciences Office, Arlington, VA, 59 pp.
Lloyd, C.D. and Atkinson, P.M., 1998. Scale and the spatial structure of landform: optimizing sampling strategies with geostatistics. In: Proceedings of the 3rd International Conference on GeoComputation, University of Bristol, United Kingdom, 17-19 September 1998, University of Bristol, Bristol, UK, 16 pp.
Lobeck, A.K., 1939. Geomorphology, McGraw-Hill. New York.
Lucieer, A., Fisher, P. and Stein, A., 2003. Texture-based segmentation of high-resolution remotely sensed imagery for identification of fuzzy objects, In: Proceedings of the Seventh International Conference on Geocomputation, University of Southampton, Southampton, UK, 9 pp.
Mackay, D.S., Samanta, S., Ahl, D.E., Ewers, B.E., Gower, S.T. and Burrows, S.N., 2003. Automated parameterization of land surface process models using fuzzy logic, Transactions in GIS, 7, pp.139-153.
MacMillan, R.A. and Shary, P.A., 2009. Landforms and landform elements in geomorphometry. In: T. Hengl and H.I., Reuter (eds) Geomorphometry: Concepts, Software, Applications, pp,227-254. Amsterdam, Netherlands: Elsevier.
MacMillan, R.A. and Shary, P.A., 2009. Landforms and Landform Elements in Geomorphometry. In: T. Hengl H.I., Reuter (Ed.) Geomorphometry: Concepts, Software, and Applications. Elsevier, Amsterdam, pp.227-254.
Meijerink, A.M.J., 1988. Data acquisition and data capture through terrain mapping units, ITC Journal, 1, pp.23-44.
Milne, G., 1935. Some suggested units of classification and mapping particularly for East Africa soils, Soil Research, 4, pp.183-198.
Minar, J. and Evans, I.S., 2008. Elementary forms for land surface segmentation: The theoretical basis of terrain analysis and geomorphological mapping, Geomorphology, 95(3-4), pp.236-259.
Mousavi, SR., Pirasteh, S., Pradhan, B., Mansor, SH. And Mahmud A.R., 2011. The Aster DEM Generation for geomorphometric analysis of central alborz mountains, Pertanika J. Sci. & Technol. 19 (S), pp.115 -124.
Mulla, D.J., 1988. Using geostatistics and spectral analysis to study spatial patterns in the topography of southeastern Washington State, USA, Earth Surface Processes and Landforms, 13, pp.389-405.
Nonja, P., Rex, C. and Lergessner, D., 2014. Geography for the Australian Curriculum Year 8, Cambridge University Press, ISBN 978-1-107-66606-1.
Pennock, D.J., Zebarth, B.J. and De Jong, E., 1987. Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada, Geoderma, 40, pp.297-315.
Pike, R.J., 1988. The geometric signature: quantifying landslide-terrain types from Digital Elevation Models, Mathematical Geology, 20, pp.491-511.
Piloyan A. and Konečný. M., 2017. Semi-automated classification of landform elements in armenia based on srtm dem using k-means unsupervised classification, Quaestiones Geographicae, 36(1).
Romstad B. and Etzelmüller B., 2009. Structuring the digital elevation model into landform elements through watershed segmentation of curvature. In: R. Purves, S., Gruber, R., Straumann and Hengl, T., (eds) Proceedings of Geomorphometry 2009, pp.55-60. Zurich, Switzerland: University of Zurich.
Romstad, B. and Etzelmuller, B., 2012. Mean-curvature watersheds: A simple method for segmentation of a digital elevation model into terrain units, Geomorphology, 139(140), pp.293-302.
Ruhl, R.V. and Walker, P.H., 1968. Hillslope models and soil formation II: Open systems, In: Proceedings of the 9th Congress of the International Soil Science Society, Adelaide, Australia, pp.551-560.
Ruhl, R.V., 1960. Elements of the soil landscape, In: Proceedings of the 7th Congress of the International Society of Soil Science, Madison, WI, pp.32-40.
Saadat, H., Robert, B., Sharifi, F., Guy, M., Namdar, M. and Ale-Ebrahim, S., 2008. Landform classification from a digital elevation model and satellite imagery, Geomorphology, 100, pp.453-464.
Schmidt, J. and Dikau, R., 1999. Extracting geomorphometric attributes and objects from digital elevation models: Semantics, methods, future needs. In: Dikau, R., Saurer, H., (eds) GIS for Earth Surface Systems: Analysis a Modeling of the Natural Environment, Berlin, Germany: Schweizbart’sche Verlagbuchhandlung, pp.153-173.
Schmidt, J. and Hewitt, A., 2004. Fuzzy land element classification from DTMs based on geometry and terrain position, Geoderma, 121(3-4), pp.243-256.
Schmidt, J., Hennrich, K. and Dikau, R., 1998. Scales and similarities in runoff processes with respect to geomorphometry, In: Geocomputation (1998). Proceedings of the 3rd International Conference on GeoComputation, University of Bristol, United Kingdom, 17-19 September 1998, University of Bristol, Bristol, UK, 20 pp.
Schmidt, J., Merz, B. and Dikau, R., 1998. Morphological structure and hydrological process modelling, Zeitschrift für Geomorphologie NF, 112, pp.55-66.
Schneevoigt, N.J., Sebastian, V.D.L., Thamm, H.P. and Schrott, L., 2008. Detecting Alpine landforms from remotely sensed imagery, a pilot study in the Bavarian Alps, Geomorphology, 93, pp.104-119.
Shary, P.A., Sharaya, L.S. and Mitusov, A.V., 2002. Fundamental quantitative methods of land surface analysis, Geoderma, 107, pp.1-32.
Skidmore, A.K., Ryan, P.J., Dawes, W., Short, D. and O’Loughlin, E., 1991. Use of an expert system to map forest soils from a geographical information system, International Journal of Geographical Information Systems, 5, pp.431-444.
Speight, J.G., 1968. Parametric description of land form, In: Stewart, G.A., (ed.), Land Evaluation: Papers of a CSIRO Symposium, Melbourne, Australia, pp. 239-250.
Speight, J.G., 1990. Landforms, In: MacDonald, R.C., Isbell, R.F., Speight, J.G., Walker, J., Hop, M.S., (eds) Australian Soil and Land Survey Field Handbook, pp. 9-57. Melbourne, Australia: Inkata Press.
Summerfield, M.A., 1991. Global Geomorphology, Longman, Harlow, 537 pp.
Suryana, N. and de Hoop, S., 1994. Hierarchical structuring of terrain mapping units. In: Proceedings of the Fifth European Conference and Exhibition on Geographic Information Systems, EGIS 94, EGIS Foundation, Utrecht, the Netherlands, 1, pp.869-877.
Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K. and Iwamoto, H., 2014. Precise Global DEM Generation by ALOS PRISM, ISPRS Annals of the Photogrammetry, Journal of Remote Sensing and Spatial Information Sciences, 2(4), pp.71-76.
Takaku, J., Tadono, T. and Tsutsui, K., 2014. Generation of High-Resolution Global DSM from ALOS PRISM, The International Archives of the Photogrammetry, Journal of Remote Sensing and Spatial Information Sciences, XL (4), pp.243-248.
Tomer, M.D. and Anderson, J.L., 1995. Variation in soil water storage across a sand plain hillslope, Soil Science Society of America Proceedings, 54, pp.1091-1100.
Weibel, R. and DeLotto, J.S., 1988. Automated terrain classification for GIS modeling, In: Proceedings of GIS/LIS, San Antonio, NM, pp.618-627.