برآورد فرسایش خاک و انتقال رسوب در بالادست حوضه آبخیز بادآور لرستان با استفاده از مدلSWAT

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار و عضو هیئت علمی دانشکده علوم زمین دانشگاه شهید بهشتی تهران

2 دانشیارگروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

3 دانش آموخته کارشناسی ارشد،گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

10.22034/gmpj.2020.122224

چکیده

فرسایش خاک و رسوب یکی از نگرانی‌های زیست محیطی قرن حاضر است. از اثرات فرسایش محلی می‌توان به هدر رفت لایه سطحی خاک و به تبع آن انتقال عناصر غذایی و کاهش توان تولید خاک اشاره کرد. این مطالعه با هدف برآورد فرسایش و رسوب در حوضه ابخیز بادآور لرستان و با استفاده از مدلSWAT انجام شده است. مدل SWAT یک مدل نیمه توزیعی با توانایی شبیه‌سازی حوضه در مقیاس‌های مختلف زمانی و مکانی است. این مدل بر اساس اطلاعات خاک، آب‌ و هوا، کاربری اراضی، توپوگرافی، و پارامترهای معادله جهانی هدر رفت خاک، فرسایش و انتقال رسوب را برآورد می‌نماید. مهم‌ترین ورودی‌های مدل شامل اطلاعات خاک،کاربری اراضی، شیب، ارتفاع، زمین شناسی، اطلاعات آب و هواشناسی (بارش، پیشینه و کمینه دما، رطوبت نسبی، نقطه شبنم، تابش خورشیدی و سرعت باد) می‌باشد. همچنین جهت تعیین مهمترین عوامل در تولید رسوب از تحلیل عاملی استفاده گردید. نتایج شبیه سازی نشان داد که مقدار رسوب خروجی از حوضه 7170 تن در سال می‌باشد. پس از اجرای مدل مقدار رسوب شبیه سازی شده با رسوب مشاهداتی مورد مقایسه قرار گرفت و با استفاده از ضریب تعیین (R2)، جذر مربعات میانگین خطا (RMSE) و شاخص توافق (D) و ضریب همبستگی (r) مورد اعتبار سنجی قرار گرفت که ارقام هرکدام به ترتیب برابر 0.95 ،0.03، 0.97 و 0.97 می‌باشد، که گویای صحت نسبتا خوب نتایج می‌باشد. همچنین تحلیل عاملی نشان داد که نقش کاربری اراضی در رسوب زایی منطقه مورد مطالعه از سایر عوامل بیشتر می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Soil Erosion and Sediment Transport by SWAT model (Case Study: Upstream of Badavar Basin, Lorestan)

نویسندگان [English]

  • somaiyeh khaleghi 1
  • Kazem nosrati 2
  • rahim abbaspour 3
1 Department of Physical Geography, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
2 Associate Professor, Department of Physical Geography, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
3 Department of Physical Geography, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Introduction
The Soil and Water Assessment Tool – SWAT (Arnold et al. 1998; Arnold et al., 2012) is a well-established physically based, semi-distributed hydrological model for river basin scale application (Brighenti et al., 2019). is a hydrological model to assess sediment (Yesuf et al., 2015; Vigiak et al., 2017; Abdelwahab et al., 2018), impact of land use (Zeiger and Hubbart, 2016; Choto and Fetene, 2019; stream flow generation (Hallouz et al., 2018; in-stream water quality, climate change and, water quality and quantity variation (Jiao et al., 2014; Francesconi et al., 2016; Yang et al., 2018 ). A number of studies used laboratory, field scales and modeling studies to understand soil erosion and sediment dynamics in various regions. Several worldwide studies have been done using the SWAT model. The objective of this study is to apply the Soil and Water Assessment Tool (SWAT) model to predict surface runoff generation patterns and soil erosion hazard in Badavar catchment and to prioritize most degraded sub-catchment in order to adopt the appropriate management intervention. The specific objective of the study is validation of the SWAT model to assess its capability in predicting sediment yield transport in Badavar catchment.

Methodology
Study area
The study area is Badavar catchment (58311 ha) in the west of Iran and the northern part of Lorestan Province. Badavar catchment is one of the sub-catchments of of the Karkheh River. The average height of the catchment is 1941 m. The annual average precipitation is 527 mm, and the annual average temperature is about 10.5 °C. The climate of study area is in the category of sub-humid, characterized by cold winters and temperate summers. Most of the study area has slope 0-5 degree. Rain farming and week rangeland are the dominate land use in this area.
The soil erosion is critical in the Badavar catchment. soil erosion in addition to damages to the land, it will reduce the capacity of the downstream dam of this catchment (the Karkheh dam). So in this study, SWAT model is used to identify the risk of erosion in Badavar catchment and various factors affecting of the erosion.

SWAT Model
Model parameters: For preparation of input data, the GIS "version10.3"and ArcMap "ArcSWAT2012" was used. The following basic data were selected as SWAT model inputs:
1) Digital Elevation Model (DEM): it is extracted from 1:50000 topography map with a spatial resolution of 30 m. 2) Landuse: it was obtained by Forests, Range and Watershed Management Organization of Iran. 3) Slope: it is extracted from DEM. Slope map shows that the Badavar catchment consists mainly of the plain with low slope (0-5 degree). 4) Hydro-meteorological data: The data required includes rainfall, river discharge, and climate data such as temperatures, solar radiations, humidity, and wind speed. These hydrological and meteorological data are collected from two organizations; the Iran Meteorological Organization and the Ministry of Energy.5) Soil data: SWAT model requires different soil textural and physico-chemical properties. These include soil texture, available water content, hydraulic conductivity, bulk density, and organic carbon content for different layers of each soil type. All of these soil characteristics and the soil map of the catchment were prepared by field survey and 39 systematic random samples of soil and laboratory works. Also the soil texture data was used to extract hydrological soil groups that were linked with FAO’s texture classification. This was then linked with the SWAT database using the soil layers and soil type. 6) Delineation of sub-catchments and HRUs:SWAT uses two types of functional units: the subbasin and the Hydrologic Response Unit (HRU) (Neitsch et al., 2011). The sub-basin is a spatially defined region that comprises a main reach and its contributing area, which is composed by one or more HRUs (Vigiak et al., 2017). On the other hand, analysis the catchment is allowed by SWAT as a whole or by subdividing it into sub-basins containing the same portions called Hydrological Response Units (HRU) (Briak et al., 2016). The HRU is a land unit of homogeneous environmental properties (soil, land use/cover, management, and topography) and hydrologic behavior (Vigiak et al., 2017). 33 sub-catchments and 53 Hydrological Response Units (HRU) have been generated for Badavar catchment.
After simulation, factor analysis was used to determine the most important factors in sediment production. Factor analysis attempts to explain the correlations between the observations in terms of the underlying factors, which are not directly observable. The purpose of factor analysis is to reduce the complexity within the similarity matrix of a multivariate data collection, transforming it into a simpler and more easily interpreted factor matrix.
Finally, for comparisons between observed and simulated sediment loads, four model evaluation statistics were selected; Correlation coefficient (R2), Root Mean Squared Error (RMSE), Index of Agreement (D) and Correlation determination (r).

Results and discussion
The most important inputs of the model are: soil information, land use, slope, elevation, geology, weather information (rainfall, background and temperature, relative humidity, dew point, solar radiation and wind speed). Also factor analysis was used to determine the most important factors in sediment production. The simulation results showed that amount of sediment output from the basin is 7170 tons per year. After implementation of the model, the amount of sediment simulated and observation sediment was compared. Correlation coefficient (R2), Root Mean Squared Error (RMSE), Index of Agreement (D) and Correlation determination (r ) were validated with 95%, 03%, 97% and 97%, respectively which indicated the high accuracy of the results. Also the results of factor analysis showed that the role of land use in sedimentation of the study area is more than other factors.

Conclusion
The comparisons between observed and simulated sediment loads showed that the model has fairly acceptable accuracy for Badavar catchment. A more accurate estimation of erosion and sediment yield can be made by providing accurate data and the best management practice is highly recommended for the dam sustainability, because of the proximity of Badavar cahchment erosion to the Karkheh dam.
Key word: Erosion, Sediment, Factor Analysis, SWAT, Badavar.

کلیدواژه‌ها [English]

  • Erosion
  • Sediment
  • Factor analysis
  • SWAT
  • Upstream of Badavar watershed
اسکندری، م.، 1389. مطالعه روند تولید رسوب در حوضه نورآباد لرستان؛ مطالعه موردی رودخانه بادآور، پایان نامه کارشناسی ارشد، دانشکده ادبیات و علوم انسانی، دانشگاه اصفهان.
حسنوند، ن.، فرقانی تهرانی، گ.، 1398. مطالعۀ ژئوشیمیایی آب و رسوب رودخانۀ بادآور، استان لرستان با نگرش زیست محیطی، پژوهش های چینه نگاری و رسوب شناسی، شماره 4، صص 128-105.
رمضانی پور، الف.، مساعدی، الف، مصداقی، م.، 1396. تعیین مناسب ترین روش برآورد رسوب معلق بر اساس آماره های خطاسنجی (مطالعه موردی-تعدادی از زیرحوضه های کشف رود)، پژوهشنامه مدیریت حوزه آبخیز، شماره 15، صص 124-112.
زارع گاریزی، الف.، طالبی، ع.، فرامرزی، م.، 1395. شناسایی و اولویت بندی مناطق بحرانی حوضه آبخیز از نظر فرسایش و رسوب با مدل SWAT. نشریه علمی-پژوهشی مهندسی و مدیریت آبخیز. شماره 4، صص 361-350. .
غفاری، ک.، 1397. پهنه بندی شدت فرسایش با استفاده از مدل SWAT در حوضه سد قشلاق. فصلنامه جغرافیا و توسعه، سال شانزدهم. شماره 50، صص 74-55.
کرمی، ف.، بیاتی خطیبی، م.، 1398. مدلسازی فرسایش خاک و اولویت بندی تولید رسوب در حوضه سد ستارخان اهر با استفاده از مدل های MUSLE و SWAT، هیدروژئومورفولوژی، شماره 18، صص 137-115.
نصرتی،ک.، شهبازی، ا.، 1387. برآورد جریان کمینه به روش هیبرید در شمال شرق ایران، نشریه دانشکده منابع طبیعی، شماره 6، صص 841-829.
  نصرتی،ک.، 1392. روش‌های کاربردی در پژوهش علمی. چاپ اول، انتشارات جهاد دانشگاهی، دانشگاه شهید بهشتی، تهران.
 
Abdelwahaba, O.M.M., Riccib, G.F., De Girolamoc, A.M. and Gentile, F., 2018. Modelling soil erosion in a Mediterranean watershed: Comparison between
SWAT and AnnAGNPS models. Environmental Research, 166, pp. 363–376.
Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., Griensven, A Van, VanLiew, M.W., Kannan, N. and Jha, M.K., 2012. Swat: model use, calibration, and validation. ASABE, 55, pp. 1491–1508.
Bauwe, A., Eckhardt, K.U. and Lennartz, B., 2019.  Predicting dissolved reactive phosphorus in tile-drained catchments using a modified SWAT model. Ecohydrology & Hydrobiology,  2, pp. 198-209.
Blanco H. and Lal, R., 2008. Principles of Soil conservation and management, Springer, New York.
Brighentia, T. M.,  Bernardi Bonumá, N., Grisonc, F., de Almeida Motac, A., Kobiyamad, M. and Luiz Borges Chaffe, P., 2019. Two calibration methods for modeling streamflow and suspended sediment with the swat model. Ecological Engineering, 127, pp. 103-113.
Daramola, J., Ekhwan, T.M., Mokhtar, J., Lam, K.C. and Adeogun, G.A., 2019. Estimating sediment yield at Kaduna watershed, Nigeria using soil and
water assessment tool (SWAT) model. Heliyon,  5, pp. 1-8.
Hallouz, F., Meddi, M., Mahé, G., Alirahmani, S. and
Keddar, A. 2018. Modeling of discharge and sediment transport through the SWAT
model in the basin of Harraza (Northwest of Algeria). Water Science, 32, pp. 79–88.
Hoanga, B.H., Hiena, H.N., Dinha, N.T.N., Thaoa, N.A., Ha, P.T.T., Kandasamyd, J. and  Nguyend, T.V., 2019. Integration of SWAT and QUAL2K for water quality modeling in a data scarce basin of Cau River basin in Vietnam. Ecohydrology & Hydrobiology, 2, pp. 210-223.
Jiao, W., Ouyang, W., Hao, F., Huang, H., Shan, Y. and Geng, X., 2014. Combine the soil water assessment tool (SWAT) with sediment
geochemistry to evaluate diffuse heavy metal loadings at watershed
scale. Journal of Hazardous Materials, 280, pp. 252–259.
Neitsch, S.L., Arnold, J.G., Kiniry, J.R. and Williams, J.R., 2011. Soil and Water Assessment tool –theoretical documentation. Texas Water Resources Institute Technical report 406.
University System College Station, Texas, U.S, Texas A&M (http://swat.tamu.edu/
media/99192/swat2009-theory.pdf, accessed 17.12.2014).
Refsgaard, J.C., 2007. Hydrological Modelling and River Basin Management, Phd Thesis. Geological Survey of Denmark and Greenland Danish Ministry of the Environment. P: 90.
Terranova, O., Antronico, L., Coscarelli, R. and Iaquinta P., 2009. Soil Erosion Risk Scenarios in the Mediterranean Environment using RUSLE and GIS: An Application Model for Calabria (southern Italy). Geomorphology, 112, pp. 228–245.
Vigiak, O., Malagó, A., Bouraoui, F., Vanmaercke, M., Obreja, F., Poesen, J.,
Habersack, H., Fehér, J. and Grošelj, S., 2017. Modelling sediment fl uxes in the Danube River Basin with SWAT. Science of the Total Environment, 599 –600, pp. 992 –1012.
Yang, Q., Almendinger, J.E., Zhang, X., Huang, M., Chen, X.,
Leng, G., Zhou, Y., Zhao, K., Asrar, G.R., Srinivasan, R. and Li, X., 2018. Enhancing SWAT simulation of forest ecosystems for water resource
assessment: A case study in the St. Croix River basin. Ecological Engineering, 120, pp. 422–431. 
Yesuf, H.M., Assen, M., Alamirew, T. and Melesse, A.M., 2015. Modeling of sediment yield in Maybar gauged watershed using SWAT, northeast
Ethiopia. Catena, 127, pp. 191–205.
Zeiger, S.J. and Hubbart, J.A., 2016. Science of the Total Environment A SWAT model validation of nested-scale contemporaneous stream flow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA. Sci. Total Environ, 572, pp. 232 –243.