بررسی شاخص‌های ژئومورفولوژی غرب مازندران، البرز مرکزی

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار دانشگاه پیام نور، دانشکده علوم، گروه زمین شناسی، تهران، ایران.

10.22034/gmpj.2020.122227

چکیده

استخراج شاخص های ریخت سنجی با استفاده از مدل‌های رقومی ارتفاعی(DEM) در محیط GIS در دهه های اخیر، روشی است که برای ارزیابی فعالیت های زمین ساختی در یک ناحیه خاص استفاده می شود. به این ترتیب می توان تاثیر گسل ها بر زمین ساخت یک منطقه را از طریق روش های کمی و مطالعات بر روی آبراهه های یک منطقه به دست آورد. در این مطالعه سعی شده تا با استفاده از شاخص های ژئومورفیکی آبراهه های بخشی از البرز مرکزی را از نظر تاثیر زمین ساخت فعال مورد پژوهش قرار دهد. برهمین اساس با استفاده از شاخص های ناهنجاری سلسله مراتبی(∆a)، گرادیان طولی رود(SL)، شکل حوضه(Ff)، تراکم زهکشی(Dd) و برجستگی نسبی (Bh) در 18 حوضه زهکشی منطقه مشخص و براساس آن پهنه بندی گردیده و تشخیص داده شد که در امتداد گسل هایی هم چون شمال البرز، خزر و آذرک میزان این شاخص ها افزایش یافته و در نتیجه می توان استنباط کرد که میزان زمین ساخت فعال در اثر فعالیت این گسل ها در منطقه مورد مطالعه بالا است. در نهایت با تعیین شاخص زمین ساخت فعال نسبی(Iat) منطقه از لحاظ سطح فعالیت زمین ساختی به چهار دسته بسیار بالا، بالا، متوسط و کم پهنه بندی گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the indicators of Western part of Mazandaran, Central Alborz

نویسنده [English]

  • Mohammad Khalaj
Assistant ProfessorPayame Noor University (PNU), Faculty of Science, Department of Geology, Iran, Tehran.
چکیده [English]

Tectonic geomorphology is the knowledge that can quantify the impact of active tectonics using geomorphic indices as quantitative measurements and descriptions of landforms and landscapes on rivers; thus, quantitative conditions measurements Provides them with the opportunity to identify the status of areas with active tectonic structure. Extraction of geomorphic indices using Digital Elevation Models (DEM) in GIS software environment in recent decades has been accurate and reliable method in drainage basin analysis, as one of these indices for rapid evaluation of activity. In order to study the active tectonics in the study area, the morphotectonic parameters of the rivers have been used. With the study of topographic landforms and the model of drainage systems by using geomorphic indices and the geological structure of each area, it is possible to evaluate the active tectonic performance and to determine the absence of active tectonic movements. The quantitative measurements provide conditions that allow them to identify the status of active tectonics areas. Along with the advancement of tectonic science of geomorphology, scientists have found that active tectonic processes can affect the shape and function of rivers being one of the most important observations that occur rapidly. And consistently respond to deformation caused by active tectonics at the surface reflecting minor changes in topography, thus examining drainage pattern and river diversion provides important information on structural expansion and evolution of the area. the Alborz orogenic belt is a part of the named area, and the placement of the studied area in the central Alborz has caused the area to be affected by this tectonic movements. This mountain range is the result of two orogenic movements, one of them is Precambrian ores (Acinitic), the course of which is essentially a metamorphism that leads to the interconnection and hardening of the paving stones in the Precambrian, The second one is the Alpine orogeny movements that it happens in Mesozoic and Cenozoic periods. This mountain range is approximately 600 kilometers long and 100 kilometers wide along the south side of the Caspian Sea. The northern margin of the Alborz line is usually sloping. General trend of study area is NE-SW. Firstly, Rivers and basins of the area were extracted using STRAHLER method using 30 m accuracy digital elevation model in Arc GIS software. Then the necessary modifications to the wells and extraction basins were carried out using topographic maps and satellite images and finally the study area was divided into 18 sub-basins. Finally, for the extracted basins, geomorphic indices including hierarchical anomaly indices (Δa), longitudinal river gradient (SL), basin shape (Ff), drainage density (Dd) and relative prominence (Bh) in 18 drainage basins were calculated and finally the relative active tectonic index (IAT) was measured. A tectonic activity zoning map was prepared for each indicator in the study area and the results of the indices were analyzed. Based on the calculations obtained from the hierarchical anomaly index, the index shows very high and high values in sub-basins 2, 6, 9, 10 and 13 along the Khazar, North Alborz and Azarak faults. The values obtained from the basin shape coefficient index calculations are also very high and high along the mentioned faults and in the aforementioned basins. In basins 12, 13 and 15 that lie along the Hassan Gile fault, the values obtained from the relative prominence indices and drainage basin density are very high and high. The extension of these faults in basins 12, 13 and 15 increases the longitudinal gradient index and thus indicates a high rate of morphotectonic anomalies in the area. Finally, by calculations with relative active tectonic person and comparing it with other calculated indices, it was found that sub-basins 12, 13 and 15 affected by Hassan Gil fault activity Very high and sub-basin 6, which is affected by the Azarak fault activity, shows high index. It should be noted that other minor faults formed due to high tectonic activity in the area have a significant impact on the increase of morphotectonic indices and have caused some sub-basins. High levels of indicators and sometimes very high. Studies in this part of central Alborz show that recent relative tectonic activity is high and very high due to the active faults in the region such as Azarak, Caspian and northern Alborz. About 66.5 percent of the area is dominated by these faults, as well as other minor faults formed by recent tectonic movements, suggesting moderate to high tectonic activity. So it can be understand that this area of Alborz totally having the high active tectonic based on morphometric indices.

کلیدواژه‌ها [English]

  • Morphometric indices
  • Fault
  • River
  • Central Alborz
  • Tectonic
افتخارنژاد، ج.، 1359، تفکیک بخش­های مختلف ایران از نظر وضع ساختمانی در ارتباط با حوضه­های رسوبی، مجله انجمن نفت ایران، ش 82 (ص 28-19).
آقا نباتی، ع.، 1383، زمین شناسی ایران، سازمان زمین شناسی و اکتشافات معدنی کشور ، چاپ اول.
بابایی، ش.، 1396، بررسی تکتونیک فعال با استفاده از شاخص­های رودخانه­ای در حوضه­های آبریز هراز، نور و نوشهر، البرز مرکزی، پایان­نامه کارشناسی ارشد، دانشگاه خوارزمی.
شاه­پسندزاده، م.، زارع، م.، 1374، بررسی مقدماتی لرزه­خیزی و  لرزه­زمین­ساخت و خطر زمین‌لرزه و گسلش در پهنه استان مازندران‌، گزارش پژوهشگاه بین­المللی زلزله.
مهدوی، م.، 1396، هیدرولوژی کاربردی، جلد دوم، چاپ پنجم، انتشارات دانشگاه تهران، تهران
نظری، ح.، فرانسوا، ر.،  ویژگی های هندسی و سازو کار جوان گسل طالقان :بر پایه بررسی های ریخت زمین ساختی، 1388، نشریه علوم زمین، ش 71 (ص 176-173).
مصدق­زاده، الف.، ده­بزرگی، م.، حکیمی­آسیابر، س.، 1398، بررسی تکتونیک ژئومورفولوژی شرق رامسر، شمال ایران، نشریه ژئومورفولوژی کمی.
Alavi, M., 1996. Tectonostratigraphic synthesis and structural style of the Alborz
mountain system in northern Iran. Geodynamics, 21, p 1- 33.
Baroni, C., Noti, V., Ciccacci, S., Righini, G., Salvatore, M.C., 2005. Fluvial Origin of the Valley System in Northern Victoria Land (Antarctica) from Quantitative Geomorphic Analysis. GSA Bulletin, 117, pp. 212–228.
Berberian, M., 1994. Natural hazards and the first earthquake catalogue of iran. historical hazards in iran prior to 1900, No 1.
Berberian, M., Qorashi, M., Argang Ravesh, B., Mohajer Ashjaie, A., 1993.
Seismotectonics and earthquake-fault hazard investigation in the Tehran Region:
contribution to the seismotectonics of Iran. Geological Survey of Iran, Report 56.
Bull, W.B. and McFadden, L.D., 1977. Tectonic geomorphology north and south of the Garlock fault, California, In: Doehring, D.O. (Ed.), Geomorphology in Arid Regions, Proceedings of the Eighth Annual Geomorphology Symposium, State University of NewYork, Binghamton, pp. 115- 138.
EL Hamdouni, R., Irigaray, C., Fernandez, T., Chacon, J., Keller, E.A., 2007. Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain), Geomorphology, 969, pp. 150- 173.
Guarnieri, P., Pirrotta, C., 2008. The response of drainage basins to the late quaternary tectonics in the Sicilian side of the Messina strait (NE Sicily). Geomorphology, 95, p 260-273
Harland, W.B., 1971. Tectonic transpression in caledonian Spitsbergen. Geological
magazine, 108, pp. 27-41.
Holbrook, J., Schumm, S.A., 1999. Geomorphic and Sedimentary Response of Rivers to Tectonic Deformation: a Brief Review and Critique of a Tool For Recognizing Subtle Epeirogenic Deformation In Modern And Ancient Settings. Tectonophysics, 305, pp. 287- 306.
Horton, R. E., 1945. Erosional development of streams and their drainage basins:
hydrophysical approach to quantitative morphology. Geological Society of America
Bulletin, 56, p 275- 370.
Keller, E. A., Pinter, N., 2002. Active Tectonics: Earthquakes, Uplift and Landscape, Prentice Hall, New Jersey.
Keller, E.A., Zepeda, R.L., Rockwell, T.K., Ku, T.L. and Dinklage, W.S., 1998. Active tectonics
at Wheeler Ridge, southern San Joaquin Valley, California. Geological Society of America
Bulletin, 110, pp. 298- 310.
Schumm, S.A., 1997. Drainage density: problems of prediction'. In: Stoddart, D.R. (Ed.), Process and Form in Geomorphology. Routledge, London, pp. 15- 45.
Seeber, L., Gornitz, V., 1983. River profiles along the Himalayan arc as indicators of active
tectonics. Tectonophysics, 92, pp. 335- 367.
Singh, P., Gupta, A. and Singh, M.,1 2014. Hydrological inferences from watershed analysis for water resource management using remote sensing and GIS techniques. The Egyptian Journal of Remote Sensing and Space Sciences, pp. 1- 11.
Stocklin, J., 1968. Structural history and tectonics of Iran: a review. American
Association of Petroleum Geologists Bulletin, 52, p 1229- 1258.
Strahler, A.N., 1952. Hypsometric (area- altitude) analysis of erosiona topography. Geological Society of America Bulletin, 63, pp. 1117- 1142.
Strahler, A.N., 1964. Quantative geomorphology of drainage basins and channel networks. In: Te Chow, Ven. (Ed.), Hand Book of Applied Hydrology. New York: McGraw Hill Book Company.
Vauchez, A. and Nicolas, A., 1991. Mountain building: strike-parallel motion and mantle anisotropy. Tectonophysics, 185(3-4), pp.183-201.
Walker, R.T., 2006. A remote sensing study of active folding and faulting in southern Kerman
province, S.E. Iran, Journal of Structural Geology, 28, PP. 654- 66.
Sussli, P.E., 1976. The geology of the lower Haraz Valley area, Central Alborz, Iran., Geologocal survey of Iran, 38.