تحلیل مکانی مخاطره سیلاب در حوضه آبریز قلعه چای عجب شیر با استفاده از GIS و مدل HEC-HMS

نوع مقاله : مقاله پژوهشی

نویسنده

هیات علمی دانشگاه پیام نور مرکز بناب

10.22034/gmpj.2021.256121.1225

چکیده

در پژوهش حاضر خطر سیلاب در سطح حوضه آبریز قلعه‌چای مورد تجزیه و تحلیل قرار می گیرد. برای پهنه بندی خطر سیلاب هشت متغیر شامل ارتفاع، شیب، تحدب سطح زمین، عمق دره، تراکم زهکشی، فاصله از رودخانه، کاربری اراضی و پوشش گیاهی با کاربست منطق فازی در بستر سیستم اطلاعات جغرافیایی ترکیب شدند. کاربرد منطق فازی برای پهنه بندی سیلاب شامل دو گام اساسی نرمال سازی لایه ها با استفاده از توابع مختلف فازی ساز و روی هم گذاری فازی آنها می باشد. برای روی هم گذاری فازی لایه های مربوطه از اپراتور گامای فازی استفاده شد. همچنین، برای ارزیابی تولید رواناب در سطح حوضه از شبیه سازی بارش- رواناب با مدل HEC-HMS استفاده گردید. بر اساس نقشه پهنه بندی خطر سیلاب با کاربست گامای فازی در حدود 7/7 درصد از سطح حوضه از خطرپذیری بسیار بالایی نسبت به سیلاب برخوردار است. پهنه های مذکور عمدتا منطبق بر دشت های سیلابی حاشیه رودخانه بوده که بستر سکنی گزینی و فعالیت های انسانی منطقه می باشند. این امر، باعث افزایش مخاطره سیلاب در سطح حوضه مطالعاتی شده و آسیب پذیری جوامع ساکن حوضه را به شدت افزایش می دهد. شبیه سازی بارش- رواناب نشان می دهد که بارش های با دوره بازگشت بالاتر می توانند باعث ایجاد دبی های سیلابی شوند. زیرحوضه های میانی حوضه به دلیل عواملی مانند پوشش گیاهی ضعیف، گستردگی زیاد خاک های گروه D، شماره منحنی (CN) بالا، فراوانی برونزدهای سنگی، شیب زیاد، کشیدگی اندک، زمان تمرکز و تاخیر پایین از سیل خیزی بالایی برخوردار می باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Spatial Analysis of Flood Hazard in Ajabshir Ghaleh Chay Catchment using GIS and HEC-HMS Model

نویسنده [English]

  • Parichehr Mesri Alamdari
Assistant Professoe,Payame Noor University(PNU)
چکیده [English]

Introduction
The most common type of natural hazard worldwide is flooding; as it accounts for about 40% of natural disasters (Warner, 2011: 1). The frequency and consequences of extreme flood events have increased rapidly worldwide in recent decades and climate change is likely to exacerbate this trend in the near future. The key factors for this increase in flood risk are: climate variability and extremes; global population growth and the increase in socio-economic activities in flood prone areas, together with their growing interdependency on flood protection and drainage infrastructure of which a significant part is of unknown or poor condition (Van Herk, 2014: 2). Therefore, supporting flood risk reduction strategies by increasing understanding of the spatial distribution of flood risk is of paramount importance (Makango Malcollo, 2016: 2). In this regard, the preparation of flood risk maps is an effective tool for flood risk assessment and management (Alcántara-Ayala and Goudie, 2010: 116). In the present study, the risk of flood in the Ghaleh Chay catchment, located in Ajabshir County, was analyzed spatially.
Materials and Methods
Eight important variables including elevation, slope, depth of valley, drainage density, convexity of land surface, distance from river, vegetation and land use were contributed to zoning flood risk in Ghaleh Chay catchment. Important part of the required data for flood risk zoning in the study area were obtained using digital elevation model (DEM) images. Fuzzy overlay in GIS consists of two basic steps. In the first step, the thematic layers must be transformed into dimensionless using different fuzzy functions. In the second step, the layers were overlaid using different fuzzy operators. In the present study, fuzzy gamma has the best performance, so combination with this function was selected as the final flood risk zoning map. After zoning of flood risk and identification of flood zones, in order to control and manage flood risk, it is necessary to identify the areas with the highest runoff production. In the present study, to evaluate runoff production in different areas of Ghaleh Chay catchment, HEC-HMS software and HEC-GeoHMS extension in ArcGIS software was used in order to precipitation-runoff simulation. Required data for the implementation of this model include digital elevation model (DEM), land use, soil hydrological groups, hydrographic and hyetograph data, which were provided by the Regional Water Organization of East Azerbaijan Province. This mathematical model simulates precipitation-runoff and routing processes in natural or controlled catchments.
Results
According to the results of flood risk zoning map using fuzzy gamma, about 7.7% and 13% of the catchment area of Ghaleh Chay is in the very high risk and high risk class, respectively. Very high-risk zones are mainly located in floodplains within the main valleys of the region. These floodplains are not very developed due to the deep and narrow valleys of the region; however, they are considered the basis for the human settlements and agricultural activities. About 60% of the residential areas of the region was located in these very dangerous areas. Also, up to 24% of the agricultural lands and orchards of the region correspond to these zones. In addition, up to 26% of the residential land uses and 29% of the agricultural irrigated lands and orchards are at high-risk class. Mentioned items indicate the high risk of Ghaleh Chay catchment. The results of precipitation-runoff simulation with HEC-HMS model show that maximum 24-hour precipitation with a return period of less than 10 years does not pose much risk in the catchment area of Ghaleh Chay catchment. With increase in precipitation, the hydrological behavior of the study catchment becomes more risky; for precipitation of 32 mm, the peak discharge of the basin reaches about 128 cubic meters per second. This volume of flood can locally pose hazards to the settlements and agricultural lands along rivers. The peak discharge of the sub-basins for this volume of precipitation also increases significantly. Also, the peak discharge of the basin is more than 334 cubic meters per second when the precipitation rate is about 50 mm. This amount of discharge is significant for the relatively small basin of Ghaleh Chay and will undoubtedly pose serious risks to settlements and facilities adjacent to the river. If the variable of area is also included in the prioritization of flooding (runoff production) of the sub-basins, sub-basins 28, 12, 13, 6, 10, 5, 11 and 18 have higher flooding.
Conclusion
The results show that flood can be considered as one of the most serious environmental hazards in the region. According to the flood risk zoning map using fuzzy gamma, about 7.7% of the basin area has a very high risk of floods. These areas mainly correspond to the flood plains along the Ghaleh Chay River, which are the realm of habitation and human activities in the region. This increases the flood hazard in the study basin and greatly increases the vulnerability of communities living in the basin. Rainfall-runoff simulations show that precipitation with a higher return period (especially above 25 years) can cause flood discharges. The middle sub basins have high flooding due to factors such as poor vegetation, large area of group D soils, high curve number (CN), rocky outcrops, high slope, low elongation, and low concentration and delay time. In fact it, a significant portion of floods in the basin originate from these areas.

کلیدواژه‌ها [English]

  • flood
  • GIS
  • Fuzzy logic
  • HEC-HMS model
  • Ghaleh Chay catchment
  • فتحعلی­زاده، ب.، عابدینی، م، و رجبی، م.، 1399. بررسی علل وقوع سیلاب و مخاطرات آن در حوضه آبریز زنوزچای با استفاده از مدل هیدرولوژیکی HEC-HMS و منطق فازی، پژوهش­های ژئومورفولوژی کمی، دوره 9، شماره 1، پیاپی 33، صص 134-155.
  • قنواتی، ع.، 1392. پهنه­بندی خطر سیلاب شهر کرج با استفاده از منطق فازی، مجله جغرافیا و مخاطرات محیطی، سال 2، شماره 8، صص 113-132.
  • قنواتی، ع.، بابائی­اقدم، ف.، همتی، ط، و رحیمی، م.، 1394. پهنه‌بندی پتانسیل سیل‌گیری با استفاده ازمدل‌ منطق فازی در محیط GIS (مطالعه موردی حوضه رودخانه خیاوچای مشکین شهر)، نشریه هیدروژئومورفولوژی، دوره 1، شماره 3، صص 121-135.
  • مدرسی، ف.، و عراقی نژاد، ش.، 1396. آموزش کاربردی مدل سازی هیدرولوژیکی حوضه آبخیز در HEC-HMS، انتشارات نشر نوآور.
  • موسوی، س. م.، نگهبان، س.، رخشانی مقدم، ح، و حسین­زاده، س. م.، 1395. ارزیابی و پهنه­بندی خطر سیل­خیزی با استفاده از منطق فازی TOPSIS در محیط GIS (مطالعه موردی: حوضه­ی آبخیز شهر باغملک)، مجله مخاطرات محیط طبیعی، سال پنجم، شماره 10، صص 79-98.
  • Alcántara-Ayala, I. and Goudie, A.S., 2010. Geomorphological Hazards and Disaster Prevention. Cambridge University Press.
  • Alkema, D., 2004. RS and GIS applications in flood forecasting. Proceedings of the National Workshop on Flood Disaster Management: Space Inputs. India. 57-59.
  • Djokic, D., 2008. Comprehensive terrain preprocessing using arc hydro tools, no 5, p 61.
  • , 2019. ArcGIS Desktop Help.
  • Feldman, A.D., 2000. Hydrologic modeling system HEC-HMS technical reference manual, p 155, March.
  • Ghosh, S. N., 2014. Flood control and drainage engineering. Fourth edition. CRC Press/Balkema.
  • Iwahashi, J. and Pike, R.J., 2007. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology, Vol. 86, pp. 409–440.
  • Kabiri, R., 2014. Simulation of runoff using modifies SCS-CN method using GIS system, case study: Klang watershed in Malaysia. Res J Environ Sci 8(4):178–192.
  • Knebl, M.R., Yang, Z-L., Hutchison, K. and Maidment, D.R., 2005. Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: a case study for the San Antonio river basin summer 2002 storm event. J Environ Manag 75(4):325–336.
  • Lai, C., Chen, X., Chen, X., Wang, Z., Wu, X. and Zhao, S., 2015. A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory. Natural Hazards 77, 1243-1259.
  • Lee, S., 2007. Application and verification of fuzzy algebraic operators to landslide susceptibility mapping, Environ Geol 52, pp: 615–623.
  • Li, Z., 2014. Watershed modeling using arc hydro based on DEMs: a case study in Jackpine watershed. Environ Syst Res 3(1):11
  • Mukungu Mukolwe, M., 2016. Flood hazard mapping: uncertainty and its value in the decision-making process. CRC Press/Balkema.
  • Nandalal, H.K. and Ratnayake, U.R., 2011. Flood risk analysis using fuzzy models. Journal of Flood Risk Management 4, 128-139.
  • Oleyiblo, J., 2010. Application of HEC-HMS for flood forecasting in Misai and Wan’an catchments in China. Water Sci Eng 3(1):14–22.
  • Schanze, J., Zeman, E. and Marsalek, J., 2004. Flood risk management: hazards, vulnerability and mitigation measures. Springer.
  • Scharffenberg, WA., 2013. Hydrologic modeling system HEC-HMS-user’s manual, p442, December.
  • Şen, Z., 2018. Flood modeling, prediction, and mitigation. Springer.
  • Sönmez, O. and Bizimana, H., 2020. Flood hazard risk evaluation using fuzzy logic and weightage based combination methods in Geographic Information System (GIS). Sharif University of Technology Scientia Iranica, Transactions A: Civil Engineering 27, 517-528.
  • Stein, S. and Stein, J., 2014. Playing Against Nature: Integrating Science and Economics to Mitigate Natural Hazards in an Uncertain World. John Wiley & Sons.
  • S. Army Corps of Engineers, USACE., 2010. HEC-GeoHMS geospatial hydrologic modeling extension, Version 5.0 - User’s Manual. Davis, CA, pp 1–6.
  • Van Herk, S., 2014. Delivering Integrated Flood Risk Management: Governance for collaboration, learning and adaptation. CRC Press/Balkema.
  • Wang, H., Yun, R., Zhao, R. and Qi, Zhen., 2019. Flash flood risk evaluation based on variable fuzzy method and fuzzy clustering analysis. Journal of Intelligent & Fuzzy Systems, vol. 37, no. 4, pp. 4861-4872.
  • Warner, J., 2011. Flood planning, the politics of water security. I.B.Tauris & Co Ltd.
  • Winsemius, H. C., Aerts, J. C. J. H., van Beek, L. P. H., Bierkens, M. F. P., Bouwman, A., Jongman, B., Kwadijk, J. C. J., Ligtvoet, W., Lucas, P. L., van Vuuren, D. P. and Ward, P. J., 2015. Global drivers of future river flood risk. Nature Clim. Change, advance online publication.