به کارگیری شاخص‌های کمّی ژئومورفومتریکی در تحلیل تغییرات جانبی مجرای رودخانه و مدیریت دشت های سیلابی (مطالعه موردی: رودخانه قره سو، از روستای قدیرلو تا روستای لعل گنج)

نوع مقاله : مقاله پژوهشی

نویسنده

دانش‌آموخته دکتری ژئومورفولوژی، دانشگاه تبریز.

10.22034/gmpj.2021.284724.1271

چکیده

رودخانه قره‌سو از رودخانه‌های دائمی استان اردبیل می‌باشد که در طی سال‌های اخیر، تحت تأثیر عوامل آنتروپوژنیک دست‌خوش تغییراتی قرارگرفته است. در این تحقیق سعی شده است با ارائه روش‌های کمی ژئومورفومتریکی، مطالعه دقیق‌تری نسبت به تغییرات جانبی مجرای رودخانه قره‌سو در طی 12 سال اخیر صورت گیرد و بینش جامعی نسبت به این تغییرات و روش‌های محاسبات آن‌ها با استفاده از تکنیک‌های سیستم اطلاعات جغرافیایی (GIS) ارائه گردد. بخش وسیعی از دشت‌سیلابی رودخانه قره‌سو زیر کشت محصولات کشاورزی می‌باشد و در بخش‌های زیادی، شاهد دست اندازی‌های کشاورزان در قسمت بستر و حریم رودخانه و نیز تغییر کاربری هستیم. این دخل و تصرف در طول سال‌های اخیر سبب ایجاد تغییراتی در مورفولوژی مجرای رودخانه قره‌سو شده است. بررسی کمی این تغییرات با استفاده از شاخص‌های ژئومورفومتریکی می تواند نقش مهمی در مدیریت دشت‌سیلابی این رودخانه ایفا کند. منطقه موردمطالعه 31 کیلومتر از این ‌رودخانه می‌باشد. فعالیت کشاورزان در اطراف رودخانه و دست‌اندازی در بستر و حریم رودخانه قره‌سو سبب کانالیزه شدن مجرا شده است که این امر می‌تواند سبب تسریع آب‌گرفتگی زمین‌های مجاور رودخانه گردد. همچنین نتایج بررسی‌ها نشان داد که تحرک بالا در میزان شاخص تغییرات خط کناری کل (E) و شاخص آهنگ تغییرات جانبی نرمال شده (N) رودخانه قره‌سو در ارتباط با مهاجرت واقعی مجرا نبوده بلکه دارای ارتباط قوی با تغییرات در عرض مجرا می‌باشد. میزان آهنگ مهاجرت واقعی محاسبه‌شده برای رودخانه قره‌سو در طی 12 سال گذشته در منطقه موردمطالعه تقریباً 36/0 متر در سال بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Applying Quantitative Geomorphometric Indicators in Analysis of Lateral Change of Channel River and Floodplains Management (Case Study: Gara-Sou River, from Gadirlou Village to Lale Ganj Village)

نویسنده [English]

  • masoud rahimi
university of tabriz
چکیده [English]

Fluvial geomorphology is the study of the interactions between river channel forms and processes at a range of space and time scales (Charlton, 2008). The last two decades or so have seen a major focus in fluvial geomorphology on developing topographic monitoring and modelling techniques to better quantify channel and floodplain morphology and morphological change in three dimensions (Rumsby, 2007). Morphological change in river channels primarily consists of adjustments to channel width, depth, local channel slope, and planform (Labbe, 2011). Several studies have documented the complexity and variation in the causes and rates of lateral movement in alluvial rivers. Depending on the input conditions and planform geometry, lateral movement can take different forms including meander migration Hooke l980; Bradley and Smith 1984; Nanson and Hickin 1986; Thorne 1991; Lawler 1993; Richardson 2002, width changes Surian 1999; Winterbottom 2000; Buhman et al. 2002; Chitale 2003, and wandering, avulsion, and cutoffs in the case of braided rivers Coleman 1969; Klaassen and Masselink 1992; Warburton et al. 1993; Xu 1996; Cao et al. 2002. During the past tens or hundreds of years, in many fluvial systems, river dynamics have been significantly affected by human disturbances such as land use changes, urbanization, channelization, dams, diversions, gravel and sand mining (Surian, 2002). In this study, lateral changes of the Gara-Sou river channel have been investigated in during the last 12 years.

Methodology
The most important data of the present study include topographic map scale of 1: 2000 (Ardabil Regional Water Authority), Topographic map scale of 1: 50,000 and 1: 25,000, geological maps scale of 1: 100,000, Satellite images of Sentinel (2017), IRS (2005, 2017) and Google Earth. In this study, GIS & RS software includes Google Earth, ENVI and Arc GIS software with HEC-GeoRAS and Planform Statistics extensions was used. In this research, field studies are basis for geomorphological analysis. The methodology and models used in this study can be summarized in processed satellite images to study changes river channel, the extraction of vegetation and land use; Geomorphometric indices for quantitative analysis of planform and lateral changes in the river channel.

Results and discussion
To measure the dynamics of the Gara-Sou river channel using quantitative Geomorphometric indicators of GIS techniques were used. Therefore 271 cross sections was drawn on 31 km from the Gara-Sou river channel. The four indices of lateral movement begin with a gross measurement of total bankline change, then break down the lateral movement into width change and migration. The indices are as follows: 1: Total bankline change, E (m/year) 2: Normalized lateral movement, N (% width/year) 3: Width change, dW (m/year) 4: True migration, M (m/year). Lateral stability is measured by quantifying how much the active channel area changes with time and how much of the active channel area remains in the same place. Total movement of the channel banks (E), incorporates width change and lateral migration of the channel. The index value (E) for the first reach, 0.86, second reach, 1 and for the three reach, 0.89 was calculated. The high value of the index (E) indicates the narrowing of the channel. The normalized lateral movement rates (N) were computed by dividing the average of the right and left bank change by the active channel width averaged over the time period. This value was then divided by the number of years in the time period to get an annual rate. This Index for the first reach, 0.048%, second period, 0.2% and for the three reach, 0.057%, was calculated. Narrowing of Gara-Sou River channel, which is primarily due to reduced lateral dynamics channel. This leads to the deposition processes of erosion processes have been overcome. Occupation and establish natural vegetation on the active point bar and encroaching agricultural land to near river land and river flood plains from other important factors are narrowing of Gara-Sou river. Also the morphology of Gara-Sou River are controlled by anthropogenic variables.
Conclusion
In this study, lateral dynamics of Gara-Sou river channel in the recent 12 years were investigated. For this purpose, a collection of Geomorphometric quantitative variables was combined with field results. High mobility in Total Bank Line Change (E) Normalized Lateral Movement Rates (N) Gara-Sou River channel is not related to the True migration but has a strong correlation with the changes in the width of channel. The true migration rate for Gara-Sou River during the last 12 years in the study area was about 0.36 meters per year. This study tries to quantify the changes through new approaches for studies fluvial Geomorphology.
Key words: Channel Lateral Change, Geomorphometry Indicators, Channel Lateral Migration, Gara-Sou River.

کلیدواژه‌ها [English]

  • Channel Lateral Change
  • Geomorphometry Indicators
  • Channel Lateral Migration
  • Gara-Sou River
اسفندیاری، ف.، رحیمی، م.، رحیمی، م.،1396. تحلیل میزان مهاجرت عرضی مجرای رودخانه ارس با استفاده از روش ترانسکت در طی سال‌های 1987 الی 2006 از سد خداآفرین تا سد میل مغان، پژوهش‌های ژئومورفولوژی کمی. دوره 5، شماره 4، صص 58-41.
حسینی، ع.، فتاحی، م.،1400. بررسی مقایسه ای شاخص مورفولوژی زاویه مرکزی(A) با پارامترهای چند فرکتالی الگوی تکامل پیچان رودها با استفاده از روابط رگرسیونی (مطالعه موردی: رودخانه قره آقاج در استان فارس)، پژوهش­های ژئومورفولوژی کمّی. دوره 9، شماره 4، صص 111-96.
خطیبی، م.،1394. بررسی تغییرات زمانی و مکانی کانال فعال در مسیر پیچان دار با استفاده از روش‌های تجربی و با استناد به لایه‌بندی رسوبات کناری، (مطالعه موردی: مسیر پیچان دار آجی چای)، جغرافیا و برنامه‌ریزی محیطی. دوره 26، شماره 2، صص65-49.
خیری زاده، م.، رضایی مقدم، م.، رجبی، م.، دانش فراز، ر.، 1396. تحلیل تغییرات جانبی مجرای رودخانه زرینه‌رود با استفاده از روش‌های ژئومورفومتریکی، پژوهش‌های ژئومورفولوژی کمی. دوره 5، شماره 4، صص 102-76.
رضایی مقدم، م.، پیروزی نژاد، ن.،1393. بررسی تغییرات مجرا و فرسایش کناره‌ای در رودخانه گاماسیاب از سال 1334 تا 1389، جغرافیا و برنامه‌ریزی. دوره 18، شماره 47، صص 132-109.
رضایی مقدم، م.، نیکجو، م.، یاسی، م.، رحیمی،م.،1396. تحلیل ژئومورفولوژیکی مجرای رودخانه قره­سو با استفاده از مدل سلسه‌مراتبی رزگن(پایین‌دست سد سبلان تا تلاقی رودخانه اهر چای)، پژوهش‌های ژئومورفولوژی کمی. دوره 6، شماره 2، صص 14-1.
روستایی، ش.، خورشید دوست، ع.، خالقی، س.، 1392. ارزیابی مورفولوژی مجرای رودخانه لیقوان با روش طبقه­بندی راسگن، پژوهش­های ژئومورفولوژی کمّی. دوره 1، شماره 4، صص 16-1.
ولی پور، ط.، حسین زاده، محمد.، اسماعیلی.، بیرانوند، س.، 1399. برآورد نرخ جابجایی عرضی کانال رودخانه لاویچ بر پایه سن سنجی درختان حاشیه رودخانه چمستان، مازندران، پژوهش­های ژئومورفولوژی کمّی. دوره 9، شماره 2، صص 59-44.
یزدانی، ت.، بهرامی، ش.، حسین زاده، م.، 1399. ارزیابی ناپایدرای کانال رودخانه بیدواز اسفراین با استفاده از مدل جانسون، پژوهش­های ژئومورفولوژی کمّی. دوره 9، شماره 3، صص 49-34.
Charlton, Rosemary (2008). Fundamental of fluvial geo morphology, first edition, Routledge, London and New York.
Gaeuman, D., Schmidt, J. C., & Wilcock, P. R. (2005). Complex channel responses to changes in stream flow and sediment supply on the lower Duchesne River, Utah. Geomorphology, 64(3-4), 185-206.
Ghoshal, S., James, L. A., Singer, M. B., & Aalto, R. Channel and floodplain change analysis over a 100-year period: Lower Yuba River, California. Remote Sens. 2, 1797–1825 (2010). Gilbert, GK: Hydraulic-mining debris in the Sierra Nevada.
Giardino, John R and Lee, Adam A. (2011). Rates of channel migration on the Brazos River. Submitted to the Texas Water Development Board. Department of Geology & Geophysics, Texas A & M University.
Ham, D.G.; Church, M. Bed material transport estimated from channel morphodynamics: Chilliwack River, BC. Earth Surf. Process. Landf. (2000), 25, 1123-l142.
Kondolf, G. Mathias & Piegay, Herve. (2003). Tools in fluvial geomorphology. John Wiley & Sons Ltd. 688 P.
Labbe, J. M., Hadley, K. S., Schipper, A. M., Leuven, R. S., & Gardiner, C. P. (2011). Influence of bank materials, bed sediment, and riparian vegetation on channel form along a gravel-to-sand transition reach of the Upper Tualatin River, Oregon, USA. Geomorphology, 125(3), 374-382.
Magdaleno, F., & Fernández-Yuste, J. A. (2011). Meander dynamics in a changing river corridor. Geomorphology, 130(3-4), 197-207.
Nicoll, T. J., & Hickin, E. J. (2010). Planform geometry and channel migration of confined meandering rivers on the Canadian prairies. Geomorphology, 116(1-2), 37-47.
Ramos, J., & Gracia, J. (2012). Spatial–temporal fluvial morphology analysis in the Quelite River: It’s impact on communication systems. Journal of hydrology, 412, 269-278.
Richard, Gigi A. (2001). Quantification and prediction of lateral channel adjustments downstream from Cochiti Dam, Rio Grande, NM. Dissertation In partial fulfillment of the requirements For the Degree of Doctor of Philosophy, Colorado State University, Fort Collins, Colorado, 229p.
Richard, Gigi. A; Julien, Pierre. Y; Baird, Drew. C. (2005). Statistical analysis of lateral migration of the Rio Grande, New Mexico. Geomorphology, Vol. 71, pp. 139-155.
Schumm, Stanley A. (2005). River variability and complexity. Cambridge University Press. 220p.
Shields, F. Douglas., Simon, Andrew, Steffen, Lyle J. (2000). Reservoir effects on downstream river channel migration. Environmental Conservation, Vol. 27, No. 1, pp. 54–66.
Surian, N., & Rinaldi, M. (2003). Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology, 50(4), 307-326.
Tealdi, S., Camporeale, C., & Ridolfi, L. (2011). Long-term morphological river response to hydrological changes. Advances in water resources, 34(12), 1643-1655.
The Federal Interagency Stream Restoration Working Group. (2001). Stream corridor restoration: principles, processes, and practices. USDA-Natural Resources Conservation Service.
Warburton, J.; Danks, M.; Wishart, D. Stability of an upland gravel-bed stream, Swinhope Burn, Northern England. Catena (2002), 49, 309-329.
Winterbottom, S. J. (2000). Medium and short-term channel planform changes on the Rivers Tay and Tummel, Scotland. Geomorphology, 34(3-4), 195-208.