ارزیابی تحول‌یافتگی توده کارستی شاهو با استفاده از روش داده‌کاوی تعمیم‌یافته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری ژئومورفولوژی، دانشکده جغرافیا، دانشگاه تهران

2 استاد گروه جغرافیای طبیعی، دانشکده جغرافیا، دانشگاه تهران

3 دانشیار گروه جغرافیای طبیعی، دانشکده جغرافیا، دانشگاه تهران

10.22034/gmpj.2021.141034

چکیده

توده کارستی شاهو در شمال غرب استان کرمانشاه به‌واسطه گستردگی سازندهای آهکی و وجود گسل‌ها و درزه‌های زمین‌شناختی از پتانسیل زیادی برای کارست‌زایی برخوردار است. هدف از این پژوهش مدل‌سازی مکانی تحول کارست در این منطقه است. در این پژوهش 10 عامل محیطی تأثیرگذار در تحول کارست استفاده گردیده است. دولین‌های کارستی منطقه با استفاده از روش CLC استخراج گردید. برای بررسی ارتباط میان دولین‌ها و عوامل مؤثر بر تحول کارست از نظریه تابع اطمینان شهودی استفاده شد و وزن طبقه‌های هر عامل مشخص شد. نتایج نشان داد که بیشترین میزان تحول کارست در شیب‌های 5-0 درصد، جهت‌شیب‌های شمالی و هموار، ارتفاع بالاتر از 2500 متر، فاصله نسبتاً کم از آبراهه‌ها (200-100 متر)، فاصله کم از گسل (کمتر از 1000متر)، سازند توده-ای بیستون، زمین‌های مرتعی و جنگل‌های نیمه انبوه، دامنه‌های مقعر و مناطق پربارش قرار دارد. نقشه پهنه‌بندی تحول کارست با استفاده از مدل جمعی تعمیم‌یافته در نرم‌افزار آماری R برای منطقه تهیه شد. نتایج قابلیت بالای تحول کارست این منطقه را نشان می‌دهد به‌طوری‌که 27درصد منطقه در طبقه با تحول زیاد و 37 درصد آن در منطقه با تحول متوسط واقع‌شده است درحالی‌که تنها 17 درصد از کل منطقه در پهنه با تحول کارست خیلی کم واقع‌شده است. مطابقت بالای نتایج به‌دست‌آمده با واقعیت منطقه موردمطالعه، بیانگر کارایی بالای مدل است.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of Shahu’s karst evolution by generalized additive model

نویسندگان [English]

  • abdolkarim veysi 1
  • ebrahim moghimi 2
  • Mehran Maghsoudi 3
  • mojtaba yamani 2
  • muosa hosseini 3
1 university of tehran
2 university of tehran
3 university of tehran
چکیده [English]

Introduction
Karst terrains play an important role in the lives of its inhabitants, and especially in dry and semi-arid countries, they are very important in providing water resources. According to UNESCO's research, karst aquifers are the most important and safe sources of drinking water in the world (Auerli, 2010:6). It seems that in the near future, due to the pollution of non-karstic water resources, as a result of human activities, this amount will increase. Karst morphology plays a very important role in evaluating the sensitivity of karst aquifers. Karstic water resources are the most important source of water supply in Kermanshah province. Due to the characteristics of karstic zones in this area, these resources are very sensitive to environmental changes. Therefore, identifying the karst landforms, observing and analyzing them are methods that cannot be separated from the complex examination of karst zones. Karstic aquifers in the Shahu area feed on many rivers and wetlands in Kermanshah. In addition, local communities around the water use aquifers for drinking and farming purposes. Therefore, based on these facts, it is very important to provide maps that determine the extent of Karst development in these areas.

Material and methods
This research is based on field techniques, tools and libraries. The main data of the research include a digital model of height of 12.5 meters from the US Geological Survey, geological maps of 1: 100000, land use map from Kermanshah County Governor's Planning and Design office. In this research, firstly, Karstic Dolines were identified as the most transformed Karstic Landform in the study area using the CLC method and were validated using field studies. The Dolines distribution map was prepared. In order to investigate the relationship between each of the factors affecting the karst evolution in Shaho area, the maps of each of the effective factors with the Dolines distribution map were overlapped in the ARC Gis software, and the weight of each class of factors influencing karst evolution using the Evidential belief function was gained. A generalized nonparametric analytic collective model is an extension of linear models to generalizations (Hastie & Tibshirani, 1990). In the generalized additive model unlike the linear regression model, data is allowed to determine the shape of the response curve.
Results and discussion
The results of the slope factor analysis indicate that the maximum weight of Dolines produced in the Shaho area is 0-5% slope, so that 61% of the karstic dolines in this class are in the high slopes. The highest amount of Dolines is in the northern slope direction. Surveying the results of the region's mineralogy units show that the highest weight obtained from the confidence level of 0.996 is related to the Bisotun massive limestone formation, which includes most of karstic dolines. Land use results show that the most of the karstic Dolines were in the good rangeland (0.45), medium rangeland (0.48) and semi-massive forests(0.7). The relationship between the Dolines and the distance from the drainage show that the highest weight (0.63) of Dolines was observed in the distance of 100-200 meters from the drainage. The area of the Karst transformation classes is presented using the aggregated general model in Figure 1. The results indicate that 27 percent of the region is in a high level of transformation. The generalized additive model show that among the ten factors used in the model, lithology, slope, distance from fault, rainfall, altitude, distance from the waterway, land use and aspect, respectively, were significant in karst development. The coefficient of explanation for the generalized model was 0.74 for functional factors. Finally, the mapping of the Karst developement in Shaho area was evaluated using the ROC curve and its curved surface.

Fig1. The area of the Karst evolution zones in the Shahu area (km2)
Conclusion
The results of validation show that the accuracy of the generalized nonparametric analytic collective model with the sub-curvature level is 0.798 is very good. The results of the model's prioritization indicate that the significance of lithology, precipitation, slope and tectonic factors was more than other factors in the Karst evolution in Shaho area. The results showed that the highest degree of karst evolution is in the low slope of 0-5%, low distance from the streams and the fault and the northern direction of slopes. The extent of karst evolution in Shahu area is higher in good rangelands. As the solubility of calcareous rocks increases with the degree of purity in the karst process, hence the high thickness and high purity of Bisetoon limeston in the Shaho region provide a good lithology for Karst development in this region. Favorable climatic conditions are not currently available for the development of Karst in this region. just at high altitudes above 2500 meters can be see the effects of the Karst evolution. The variation of karst landforms in this area is very high and therefore it is necessary to determine how using of this resources and appropriate protective measures prepared.
Keywords: karst evolution, doline, data mining, shahu

کلیدواژه‌ها [English]

  • karst evolution
  • doline
  • data mining
  • shahu
بهنیافر،ابوالفضل.، قنبرزاده، هادی.، عباسعلی،فرزانه. (1388). ویژگی­های ژئومورفولوژیکی توده کارستی اخملد در دامنه­های شمالی ارتفاعات بینالود، مجله جغرافیا و توسعه، شماره 14، صص 121-140
صفاری، امیر.، گنجائیان، حمید.، حیدری، زهرا.، فریدونی کردستانی، مژده. (1397). تعیین مناطق کارست توسعه­یافته با استفاده از مدل­های منطق فازی و OWA در حوضه قره­سو، هیدروژئومورفولوژی، شماره 15، صص114-95
عباسی، محمد.، باقری، سجاد.، جعفری اقدم، مریم.، (1391). پهنه­بندی تحول کارست با استفاده از مدل آنتروپی نمونه موردی: تاقدیس نوا زاگرس شمال باختری، مجله علوم زمین، سال بیست و چهارم، شماره 94، صص 168-161.
قدیمی، مهرنوش.، مقیمی، ابراهیم، ملکیان، آرش. (1394). روش­های تحقیق در هیدروژئولوژی کارست. انتشارات دانشگاه تهران.
قربانی، محمدصدیق.، محمودی، فرج اله.، یمانی، مجتبی.، مقیمی، ابراهیم.، (1389) نقش تغییرات اقلیمی کواترنر در تحول ژئومورفولوژیکی فروچاله­های کارستی. مطالعه موردی: ناهمواری شاهو، غرب ایران. پژوهش­های جغرافیای طبیعی، شماره 74، صص16-1.
قربانی؛ محمدصدیق.، اونق، مجید، (1391). پهنه­بندی تحول و حساسیت کارست با استفاده از مدل رگرسیون خطی چند متغیره در منطقه کارستی شاهو، مجله پژوهش­های ژئومورفولوژی کمی، دوره 1، شماره1، 33-19.
مددی، عقیل؛ همتی، طاهر.، (1394). پهنه­بندی قابلیت کارست­زایی با استفاده از مدل منطق فازی (مطالعه موردی: منطقه نمک آبرود شهرستان چالوس)، فصلنامه ژئومورفولوژی کابردی ایران، سال سوم، شماره پنجم، صص 102-89
معصوم­پور ماکوش، جعفر.، میری، مرتضی و سجادباقری سیدشکری (1395). اثر تغییر اقلیم بر آبدهی و ویژگی­های چشمه­های کارستی استان کرمانشاه، مجله جغرافیا و پایداری محیط، شماره 21، صص 65-51.
مقصودی، مهران.، اخوان، هانیه.، مهدیان، مجتبی.، عشورنزاد، غدیر.، (1394) پهنه­بندی شدت انحلال سنگ­های کربناته در زاگرس جنوبی (مطالعه موردی: حوضه سیف آباد لاغر)، پژوهش­های جغرافیای طبیعی، دوره 47، شماره 1، صص 150-124.
ملکی، امجد.، شوهانی، داوود.، علایی طالقانی، محمود.، (1387). پهنه­بندی تحول کارست در استان کرمانشاه، فصلنامه مدرس علوم انسانی، دوره 13، شماره 1، 295-271.
یمانی، مجتبی.، شمسی­پور، علی اکبر.، جعفری اقدم، مریم.، باقری، سجاد؛ (1392). بررسی عوامل موثر در توسعه­یافتگی و پهنه­بندی کارست حوضه چله با استفاده از منطق فازی و AHP، استان کرمانشاه، مجله علوم زمین، سال بیست و دوم، شماره 88، صص 66-57.
Althuwaynee, O. F., Pradhan, B., Park, H. J., & Lee, J. H. (2014). A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena, 114, 21-36.
Aureli, A. (2010). The UNESCO IHP’s Shared Aquifer Resources Management Global Project AQUAmundi, 1, 1-6.
Bakalowicz, M. (2018). Coastal Karst Groundwater in the Mediterranean: A Resource to Be Preferably Exploited Onshore, Not from Karst Submarine Springs. Geosciences, 8(7), 258.
Bansah, K., & Anderson, N. (2017, March). Factors Contributing to Karst Development in Southwestern Missouri, USA. In Symposium on the Application of Geophysics to Engineering and Environmental Problems 2017 (pp. 219-223). Society of Exploration Geophysicists and Environment and Engineering Geophysical Society.
Carranza, E. J. M., & Hale, M. (2003). Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geology Reviews, 22(1-2), 117-132.
Carranza, E. J. M., Woldai, T., & Chikambwe, E. M. (2005). Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi district, Zambia. Natural Resources Research, 14(1), 47-63.
Cloetingh Yu. Podlachikov Y. 2000. Perspectives on tectonic modeling. Tectonophysics. 320: 169–173. Dempster AP. 1967. Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics. 38 (2): 325–339.
 Komac, M. (2006). A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology, 74(1-4), 17-28.
Fang, X. (2008). Generalized additive models with correlated data. The University of Iowa.
Frank, E., Mylroie, J., … J. T.-… of C. and K., & 1998, Karst development and speleogenesis, Isla de Mona, Puerto Rico. Academia.edu. Retrieved from http://www.academia.edu/download/5864253/v60n2-frank-karst.pdf
Goetz, J. N., Guthrie, R. H., & Brenning, A. (2011). Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology, 129(3-4), 376-386.
Hanspach, J., Kühn, I., Pompe, S., & Klotz, S. (2010). Predictive performance of plant species distribution models depends on species traits. Perspectives in Plant Ecology, Evolution and Systematics, 12(3), 219-225.
Hastie, T., & Tibshirani, R. (1987). Non-parametric logistic and proportional odds regression. Applied statistics, 260-276.
Kukurić, N., Stevanovic, Z., & Kresic, N. (2014). Karst without Boundaries. Conference and Field Seminar “Karst Without Boundaries.” https://doi.org/10.1111/gwat.12487.
Kumar, U., Kumar, B., & Mallick, N. (2013). Groundwater prospects zonation based on RS and GIS using fuzzy algebra in Khoh river watershed, Pauri-Garhwal district, Uttarakhand, India. Global Perspectives on Geography (GPG), 1(3), 37-45.
Li, Z. G., Zhou, H. H., & Xu, Y. H. (2013). Research on Prediction Model of Support Vector Machine Based Land Subsidence Caused by Foundation Pit Dewatering. In Advanced Materials Research (Vol. 671, pp. 105-108). Trans Tech Publications.
Liang, F, Yunyan, D U, Yong, G U, CeA, LI. (2014). quantitative morphometric comparison of cockpit and doline karst landforms , Journal of Geographical Sciences, 24(6), 1069-1082.London.
Parise, M., Gabrovsek, F., Kaufmann, G., & Ravbar, N. (2018). Recent advances in karst research: from theory to fieldwork and applications. Geological Society, London, Special Publications, 466, SP466-26.
Petschko, H., Brenning, A., Bell, R., Goetz, J., & Glade, T. (2014). Assessing the quality of landslide susceptibility maps–case study Lower Austria. Natural Hazards and Earth System Sciences, 14(1), 95-118.
Pourghasemi HR. Rossi M. (2017). Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods Theoretical and Applied Climatology. 130 (1-2): 609-633.
Pourghasemi HR. Yousefi S. Kornejady A. Cerda A. (2016) Applying different new ensemble data mining techniques for Gully erosion mapping with Geographical Information Systems. Science of the Total Environment. 609 (31): 764–775.
Pradhan, B., Abokharima, M. H., Jebur, M. N., & Tehrany, M. S. (2014). Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Natural hazards, 73(2), 1019-1042.
Shafer, G. (1976). A mathematical theory of evidence (Vol. 42). Princeton university press.
Toll, D. G. (1996). Artificial intelligence applications in geotechnical engineering. Electronic Journal of Geotechnical Engineering, 1, 767-773.
Toll, D. G. (1996). Artificial intelligence applications in geotechnical engineering. Electronic Journal of Geotechnical Engineering, 1, 767-773.
Zhou, Z., Zhang, S., Xiong, K., Li, B., Tian, Z., Chen, Q., ... & Xiao, S. (2017). The spatial distribution and factors affecting karst cave development in Guizhou Province. Journal of Geographical Sciences, 27(8), 1011-1024.