مدل‌سازی تغییرات فرسایش و رسوب رودخانه سجاسرود قبل و بعد از ساخت سد گلابر با روش GCD

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه جغرافیای طبیعی،دانشکده علوم اجتماعی ، دانشگاه محقق اردبیلی، اردبیل.

2 دانشیار گروه جغرافیای طبیعی ، دانشکده علوم اجتماعی ، دانشگاه محقق اردبیلی ، اردبیل

3 استاد گروه جغرافیای طبیعی ، دانشکده علوم اجتماعی ، دانشگاه محقق اردبیلی ، اردبیل

10.22034/gmpj.2021.301032.1299

چکیده

امروزه از داده های تصاویر ماهواره ای در زمینه های مختلف برای رصد و کشف تغییرات پدیده های مختلف ژئومورفولوژی استفاده می شود.در همین راستا با هدف تعیین و تبیین تاثیر سد گلابر بر مورفولوژی و میزان فرسایش و رسوبگذاری رودخانه سجاسرود در پایین دست، از مدل GCD استفاده گردید. داده های این مدل از طرق مختلف قابل حصول است. در این مقاله مدل های رقومی ارتفاعی سری زمانی، از تصاویر ماهواره ای استر سری L1A و L1B برای مدل GCD تهیه گردید. پس از تهیه DEM های تاریخی مورد نیاز ، مدل با سه روش حداقل سطح تشخیص ، مدل خطاهای انتشاریافته و تعیین آستانه احتمالی با استفاده از تعریف یک‌فاصله اطمینان توسط کاربر، در محیط نرم افزار ARCGIS و الحاقیه GCD اجرا گردید. خروجی روش های سه گانه مدل نشان داد، در تمام طول دوره مطالعه 2003تا 2019 فرایند رسوبگذاری در بستر رودخانه بر فرایند فرسایش غلبه داشته است. از طرفی بعد از بهره برداری از سد، ضمن کاهش کلی نرخ فرسایش و رسوب در پایین دست سد، خروجی مدل GCD در هر سه روش و نمودارهای رواناب سری زمانی، حاکی از کاهش معنادار میزان فرسایش در بستر رودخانه دارد. با کاهش قدرت حمل بار رسوب و فرسایش رودخانه در بخشهایی از مسیرش با جابجایی و افزایش عمق مواجه شده است. .همچنین میانگین درصد تغییرات اختلاف حجم خالص در رودخانه از 19/0 درصد قبل از ساخت سد تا 50/0 درصد بعد از ساخت سد برای مدل‌های مختلف در نوسان است.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling erosion and sedimentation changes of Sojasrood River before and after construction of Glaber Dam by GCD method

نویسندگان [English]

  • Hassan Mozaffari 1
  • sayad Asghari Saraskanrood 2
  • fariba esfandiyari darabad 3
1 Secretary of Education
2 Associate Professor Mohaghegh Ardabili University
3 Professor Mohaghegh Ardabili University
چکیده [English]

Extended Abstract

Introduction
Humans have turned to dam construction to meet water needs, develop agricultural and industrial activities, and control floods since ancient times. These problems are evident both upstream of dams and downstream. Downstream problems of dams and rivers include changes in erosion and sedimentation processes in the river bed, redirection, and depth. The other part is the problems with environmental issues. The goal of this study was to analyze and investigate the effect of Glaber Dam before and after its construction on erosion and sedimentation downstream of the Sojasrood River. For this purpose, after extracting time series Dems before and after the construction of Glaber Dam from Aster satellite imagery, these Dems entered the gcd extension in ArcGIS software. The gcd model revealed the morphological changes of the riverbed before and after dam construction and the Rate of changes in volume and area of erosion and sediment along the riverbed was determined.

Methodology
Sojasrood basin is located in the northwest of Iran, south of Zanjan province, between 36 degrees and 7 minutes to 36 degrees and 30 minutes north, longitudes 48 degrees and 16 minutes to 48 degrees and 50 minutes east. According to the studies, it is about 2494 square kilometers, of which 1298 square kilometers are alluvial deposits and the rest are elevations. In this catchment area, the plains are in the form of major hills and a rugged valley that is separated by high elevations or low-lying Polyoplostocene deposits. The Sojasrood River originates from the east and from the Mazidabad plain and flows into the Qezel Ozan River with the east-west trend after passing through the city of Sojas in the Downstream of the village of YengiKand
To conduct this research, images of L1A and L1B series aster, Google Earth Engine system, R programming language, topographic maps of 50,000 armed forces geographic organizations, digital elevation model ALOS, GPSgarmine device, ARCGIS software, GCD software and extension, ENVY 5.3 software, and field visit were used. The research methodology is applied in terms of purpose and in terms of the nature of the survey and analytical. After preparing the required historical Dems, the model was implemented in ArcGIS and gcd extension by three methods of Minimum Level of Detection, Propagated Errors, and Probabilistic Thresholding

Results and Discussion
By implementing the minimum detection level method with thresholds between 0.10 m to 0.80 m in GCD extension in the period before dam construction (2003-2007) based on the maps and output diagrams of the Minimum Level of Detection method, it was found that the sedimentation process in the riverbed dominates the erosion process. According to the output of the method, the Minimum Level of Detection in the period after dam operation, the sedimentation process is intensified and erosion is minimized. The output of the riverbed geomorphological changes model in the Propagated Errors method shows that between 2003 and 2007, which is the stage before dam construction, the sedimentation rate in the riverbed, like the Minimum Level of Detection model, is almost twice the erosion level which is completely in line with the output of the runoff chart generated in the google earth engine system. This trend has decreased exponentially after the construction and operation of Glaber Dam, i.e. between 2013 and 2019. Due to the storage of water behind the dam and the reduction of runoff, the erosion rate has decreased exponentially from about 220 thousand to 78 thousand cubic meters. In the method of determining the Probabilistic Thresholding, thresholds were analyzed based on statistical models and by determining the different confidence intervals of volumetric changes of erosion and sediment to obtain a more accurate estimate of the geomorphological changes of the riverbed. The Probabilistic thresholding model in the second time series, ie 2013 to 2019, shows that the volume changes related to the sedimentation process in the riverbed are more than 2.5 times the changes related to erosion. The slope of the changes in the low confidence interval is very high compared to the 95 % confidence interval. Similar to the Minimum Level of Detection model for the second time series in this model, the total difference in net volume is more than the volume changes of erosion surfaces. Therefore, it can be easily understood that by constructing Glaber Dam, while reducing river runoff downstream of the dam, the share of erosion in the bed has decreased and the sedimentation rate has increased. Also, in the time series 2013 to 2019 with 95 % confidence level, erosion levels reached 19808 m3, and sedimentation levels reached 53277 m3 in the whole substrate.

Conclusion
The output of the graphs and the three methods of the GCD model show that, firstly, in the whole period studied (2003-2009), the sedimentation process prevails over the erosion rate. Second, the deposition process in the time series 2019-2013 increased compared to the time series 2007-2003 and on the contrary, the erosion rate was decreasing. Therefore, considering that the amount of rainfall is not statistically significant between the two periods and there are no extensive land use changes around the river downstream, and also the amount of runoff in the second time series has decreased compared to the first time series, It can be concluded that Glabar Dam has a direct effect on reducing runoff and river dynamics downstream and has caused a general reduction in erosion and sedimentation rates and deepening of the flow bed. The results of this study can be fruitful in identifying the different effects of geomorphology, environmental impacts of dam construction on rivers and help geomorphologists to better manage the environment.

Keywords: DEM, GCD, DOD, Sedimentation, Erosion.

کلیدواژه‌ها [English]

  • Keywords: DEM
  • GCD
  • DOD
  • Sedimentation
  • Erosion
آذرنگ، فرهنگ؛ تلوری، عبدالرسول؛ صدقی، حسین؛ و شفاعی بجستان، محمود. (۱۳۹۵). بررسی شرایط فرسایش و رسوب رودخانه کرخه در پایین‌دست سد مخزنی. علوم و مهندسی آبخیزداری، سال دهم، 15-26.
اعظم طیبی؛ محمد فرجی؛ و شهرام یوسفی خانقاه. (۱۳۹۷). ارزیابی تأثیر احداث سد مارون بر مرفولوژی رودخانه و تغییر کاربری اراضی پایین‌دست. دانشکده منابع طبیعی دانشگاه تهران، 71(2)، 419-430.
بیاتی, مریم; کرمی, فریبا; رجبی, معصومه; & مختاری, داوود. (1388). تغییرات ژئومورفولوژیکی ناشی از احداث سدهای سهند و ملاجیغ در بستر رودخانه‌های قرنقو و شور و دامنه های مشرف به دریاچه های سدها ( واقع در دامنه های شرقی کوهستان سهند ). پژوهش های جغرافیای طبیعی (پژوهش های جغرافیایی سابق), چهل(68).
جوکار سرهنگی؛ عیسی؛ تلنک؛ و لرستانی. (۲۰۱۸). بررسی تغییرات مورفومتری رودخانه با تاکید بر پیچان‌رودها (مطالعه موردی: رودخانه چهل‌چای-نرماب). مجله آمایش جغرافیایی فضا، 7(26)، 17-30.
حسین زاده، محمد مهدی؛ و اسماعیلی، رضا. (۱۳۹۴). ژئومورفولوژی رودخانه‌ای مفاهیم، اشکال و فرآیندها. تهران: انتشارات دانشگاه شهید بهشتی.
خسروی؛ انتظاری؛ احمدآبادی؛ علی؛ پورموسوی؛ و سیدموسی. (۲۰۲۰). تحلیل اثر توسعه شهری تهران بر چرخه هیدرولوژی و ژئومورفولوژی رودخانه اوین-درکه. پژوهشهای ژئومورفولوژی کمّی، 9(1)، 184-202.
رضایی مقدم محمدحسین؛ جباری ایرج؛ و پیروزی نژاد نوشین. (بی‌تا). بررسی الگوهای رودخانه ای مئاندری، شریانی و آنابرنچینگ با استفاده از شاخص های شریانی و خمیدگی در رودخانه گاماسیاب.
رضایی مقدم، محمد حسین؛ نیکجو، محمدرضا؛ و کیانی، وحید. (۱۳۹۵). تحلیل کمی مورفولوژی مجرای رودخانه سجاسرود قبل و بعد از احداث سد گلابر (پایین‌دست سد) (پایان‌نامه کارشناسی ارشد). دانشگاه تبریز، دانشگاه تبریز.
سربازی؛ حاجی بیگلو؛ و گوهری. (بی‌تا). کاربرد سنجش از دور در تعیین تغییرات مورفولوژی رودخانه کشف‌رود. نشریه علمی پژوهشی مهندسی آبیاری و آب ایران، 6(1)، 150-165.
شفیعی خورشیدی، فاطمه؛ متین فر، حمید رضا؛ علوی پناه، سید کاظم؛ و فرخی. (۱۳۹۰). تولید مدل رقومی ارتفاع با استفاده از زوج تصویر سنجنده ASTER. سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی ( کاربرد سنجش از دور و GISدر علوم منابع طبیعی )، 2(3)، 1-11.
فصاحت وجیهه؛ ساداتی نژاد سیدجواد؛ هنربخش افشین؛ و صمدی بروجنی حسین. (۱۳۹۳). تاثیر احداث سد مخزنی در میزان کاهش دبی اوج سیلاب. پژوهشنامه مدیریت حوزه آبخیز، 5(10)، 44-54.
محمد شریفی کیا؛ سیاوش شایان؛ سید مروت افتخاری؛ و امیر کرم. (۱۳۹۶). تحلیل تغییرات مورفولوژیکی رودخانه ناشی از احداث سد طالقان بر پایه تفاضل سنجی زمانی داده های سنجش ازدوری. مدرس علوم انسانی ( برنامه ریزی و آمایش فضا )، سال بیست و یکم، 243-263.
نیری، ‌هادی. (۱۳۹۴). تحلیل مورفولوژیکی مجرای رودخانه مهاباد و تأثیر احداث سد بر آن. تحقیقات کاربردی علوم جغرافیایی، 37(15)، 155-178.
یمانی مجتبی؛ دولتی جواد؛ و زارعی علیرضا. (بی‌تا). تاثیرگذاری عوامل هیدرو ژئومورفیک در تغییرات زمانی و مکانی بخش میانی رودخانه اترک.
Adair, E Carol; Binkley, Dan; & Andersen, Douglas C. (2004). Patterns of nitrogen accumulation and cycling in riparian floodplain ecosystems along the Green and Yampa rivers. Oecologia, 139(1), 108-116.
Brasington, J.; Rumsby, B. T.; & McVey, R. A. (2000). Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey. Earth Surface Processes and Landforms, 25(9), 973-990. https://doi.org/10.1002/1096-9837(200008)25:9<973::AID-ESP111>3.0.CO;2-Y
Brasington, J.; Vericat, D.; & Rychkov, I. (2012). Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning: MODELING RIVER BED MORPHOLOGY WITH TLS. Water Resources Research, 48(11). https://doi.org/10.1029/2012WR012223
Brasington, James; Langham, Joe; & Rumsby, Barbara. (2003). Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. Geomorphology, 53, 299-316. https://doi.org/10.1016/S0169-555X(02)00320-3
Cavalli, Marco; Goldin, Beatrice; Comiti, Francesco; Brardinoni, Francesco; & Marchi, Lorenzo. (2017). Assessment of erosion and deposition in steep mountain basins by differencing sequential digital terrain models. Geomorphology, 291, 4-16. https://doi.org/https://doi.org/10.1016/j.geomorph.2016.04.009
Croke, Jacky; Todd, Peter; Thompson, Chris; Watson, Fiona; Denham, Robert; & Khanal, Giri. (2013). The use of multi temporal LiDAR to assess basin-scale erosion and deposition following the catastrophic January 2011 Lockyer flood, SE Queensland, Australia. Geomorphology, 184, 111-126. https://doi.org/https://doi.org/10.1016/j.geomorph.2012.11.023
Cucchiaro, Sara; Cazorzi, Federico; Marchi, Lorenzo; Crema, Stefano; Beinat, Alberto; & Cavalli, Marco. (2019). Multi-temporal analysis of the role of check dams in a debris-flow channel: Linking structural and functional connectivity. Geomorphology, 345, 106844.
Cutler, Joseph S; Olivos, J Andrés; Sidlauskas, Brian; & Arismendi, Ivan. (2020). Habitat loss due to dam development may affect the distribution of marine‐associated fishes in Gabon, Africa. Ecosphere, 11(2), e03024.
David, Mélodie; Labenne, Amaury; Carozza, Jean-Michel; & Valette, Philippe. (2016). Evolutionary trajectory of channel planforms in the middle Garonne River (Toulouse, SW France) over a 130-year period: Contribution of mixed multiple factor analysis (MFAmix). Geomorphology, 258, 21-39.
Dudgeon, David; Arthington, Angela H; Gessner, Mark O; Kawabata, Zen-Ichiro; Knowler, Duncan J; Lévêque, Christian; … Stiassny, Melanie LJ. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological reviews, 81(2), 163-182.
Dynesius, Mats; & Nilsson, Christer. (1994). Fragmentation and flow regulation of river systems in the northern third of the world. Science, 266(5186), 753-762.
Eker, Remzi; Aydın, Abdurrahim; Bühler, Yves; & Stoffel, Andreas. (2018). SFM-BASED 3D POINT CLOUDS IN DETERMINATION OF SNOW DEPTH FROM HIGH-RESOLUTION UAS DATA AS ALTERNATIVE METHODS: IS IT POSSIBLE TO USE?
Favalli, M.; Fornaciai, A.; Mazzarini, F.; Harris, A.; Neri, M.; Behncke, B.; … Boschi, E. (2010). Evolution of an active lava flow field using a multitemporal LIDAR acquisition. Journal of Geophysical Research, 115(B11). https://doi.org/10.1029/2010JB007463
Graf, William L. (1999). Dam nation: A geographic census of American dams and their large‐scale hydrologic impacts. Water resources research, 35(4), 1305-1311.
Grant, Gordon E; Schmidt, John C; & Lewis, Sarah L. (2003). A geological framework for interpreting downstream effects of dams on rivers. Water Science and Application, 7, 209-225.
Haas, Florian; Hilger, Ludwig; Neugirg, Fabian; Umstädter, Kathrin; Breitung, Christian; Fischer, Peter; … Becht, Michael. (2015). Quantification and analysis of geomorphic processes on a recultivated iron ore mine on the Italian island Elba using long-time ground-based LIDAR and photogrammetric data by an UAV. Natural Hazards and Earth System Sciences, 3, 6271-6319. https://doi.org/10.5194/nhessd-3-6271-2015
James, L. Allan; Hodgson, Michael E.; Ghoshal, Subhajit; & Latiolais, Mary Megison. (2011). Geomorphic change detection using historic maps and DEM differencing : The temporal dimension of geospatial analysis.
Kaliraj, S.; Chandrasekar, N.; & Ramachandran, K. K. (2017). Mapping of coastal landforms and volumetric change analysis in the south west coast of Kanyakumari, South India using remote sensing and GIS techniques. The Egyptian Journal of Remote Sensing and Space Science, 20(2), 265-282. https://doi.org/https://doi.org/10.1016/j.ejrs.2016.12.006
karslan, S.; Coşkun, S. B.; & Taşkın, B. (2005). Transient analysis of dam reservoir interaction including the reservoir bottom effects. Journal of Fluids and Structures, 20, 1073-1084. https://doi.org/10.1016/j.jfluidstructs.2005.05.004
Kondolf, George Mathias; Rubin, Zan K; & Minear, JT. (2014). Dams on the Mekong: Cumulative sediment starvation. Water Resources Research, 50(6), 5158-5169.
Korup, Oliver. (2005). Geomorphic hazard assessment of landslide dams in South Westland, New Zealand: Fundamental problems and approaches. Geomorphology, 167-188. https://doi.org/10.1016/j.geomorph.2004.09.013
Kunz, Manuel J; Anselmetti, Flavio S; Wüest, Alfred; Wehrli, Bernhard; Vollenweider, Adrian; Thüring, Silvan; & Senn, David B. (2011). Sediment accumulation and carbon, nitrogen, and phosphorus deposition in the large tropical reservoir Lake Kariba (Zambia/Zimbabwe). Journal of Geophysical Research: Biogeosciences, 116(G3).
Lane, Stuart N.; Westaway, Richard M.; & Murray Hicks, D. (2003). Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing. Earth Surface Processes and Landforms, 28(3), 249-271. https://doi.org/10.1002/esp.483
Larue, Jean-Pierre. (2008). Effects of tectonics and lithology on long profiles of 16 rivers of the southern Central Massif border between the Aude and the Orb (France). Geomorphology, 93(3-4), 343-367.
Latrubesse, Edgardo M; Arima, Eugenio Y; Dunne, Thomas; Park, Edward; Baker, Victor R; d’Horta, Fernando M; … Baker, Paul A. (2017). Damming the rivers of the Amazon basin. Nature, 546(7658), 363-369.
Latrubesse, Edgardo M; d’Horta, Fernando M; Ribas, Camila C; Wittmann, Florian; Zuanon, Jansen; Park, Edward; … Baker, Paul A. (2021). Vulnerability of the biota in riverine and seasonally flooded habitats to damming of Amazonian rivers. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(5), 1136-1149.
Lorang, Mark S.; & Aggett, Graeme. (2005). Potential sedimentation impacts related to dam removal: Icicle Creek, Washington, U.S.A. Geomorphology, 71(1-2), 182-201. https://doi.org/10.1016/j.geomorph.2004.10.013
Magilligan, Francis J; & Nislow, Keith H. (2001). LONG‐TERM CHANGES IN REGIONAL HYDROLOGIC REGIME FOLLOWING IMPOUNDMENT IN A HUMID‐CLIMATE WATERSHED 1. JAWRA Journal of the American Water Resources Association, 37(6), 1551-1569.
Marcinkowski, Paweł; & Grygoruk, Mateusz. (2017). Long-Term Downstream Effects of a Dam on a Lowland River Flow Regime: Case Study of the Upper Narew. Water, 9(10). https://doi.org/10.3390/w9100783
Milan, David J.; Heritage, George L.; & Hetherington, David. (2007). Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river. Earth Surface Processes and Landforms, 32(11), 1657-1674. https://doi.org/10.1002/esp.1592
Morris, Michael R; & Stanford, Jack A. (2011). Floodplain succession and soil nitrogen accumulation on a salmon river in southwestern Kamchatka. Ecological Monographs, 81(1), 43-61.
Naiman, Robert J; & Decamps, Henri. (1997). The ecology of interfaces: riparian zones. Annual review of Ecology and Systematics, 28(1), 621-658.
Nguyen, Hoang Huu; Dargusch, Paul; & Moss, Patrick. (2016). A review of the drivers of 200 years of wetland degradation in the Mekong Delta of Vietnam. Regional Environmental Change, 16(8), 2303-2315.
Orem, Caitlin A.; & Pelletier, Jon D. (2015). Quantifying the time scale of elevated geomorphic response following wildfires using multi-temporal LiDAR data: An example from the Las Conchas fire, Jemez Mountains, New Mexico. Geomorphology, 232, 224-238. https://doi.org/https://doi.org/10.1016/j.geomorph.2015.01.006
Pasha, M Fayzul K; Yeasmin, Dilruba; & Rentch, Jeremy W. (2015). Dam-lake operation to optimize fish habitat. Environmental Processes, 2(4), 631-645.
Petts, Geoffrey E; & Gurnell, Angela M. (2005). Dams and geomorphology: research progress and future directions. Geomorphology, 71(1-2), 27-47.
Poeppl, Ronald E; Keesstra, Saskia D; Keiler, Margreth; Coulthard, Tom; & Glade, Thomas. (2013). Impact of dams, dam removal and dam-related river engineering structures on sediment connectivity and channel morphology of the Fugnitz and the Kaja Rivers (pp. 607-614). Presented at the 5th Symposium on Research in Protected Areas.
Sanyal, Joy. (2017). Predicting possible effects of dams on downstream river bed changes of a Himalayan river with modmorphodynamic elling. Quaternary International, 453, 48-62.
Słowik, Marcin; Kiss, Kinga; Czigány, Szabolcs; Gradwohl-Valkay, Alexandra; Dezső, József; Halmai, Ákos; … Pirkhoffer, Ervin. (2021). The influence of changes in flow regime caused by dam closure on channel planform evolution: insights from flume experiments. Environmental Earth Sciences, 80(4), 165. https://doi.org/10.1007/s12665-021-09437-5
Smith, Virginia B; & Mohrig, David. (2017). Geomorphic signature of a dammed Sandy River: the lower Trinity River downstream of Livingston Dam in Texas, USA. Geomorphology, 297, 122-136.
Surian, Nicola. (1999). Channel changes due to river regulation: the case of the Piave River, Italy. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 24(12), 1135-1151.
Wheaton, Joseph M.; Brasington, James; Darby, Stephen E.; & Sear, David A. (2009). Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surface Processes and Landforms, n/a-n/a. https://doi.org/10.1002/esp.1886
Williams, Garnett P; & Wolman, Markley Gordon. (1984). Downstream effects of dams on alluvial rivers (Vol. 1286). US Government Printing Office.
Williams, Richard. (2012). DEMs of difference. Geomorphological Techniques, 2.
Xiang, Jie; Jianping, Chen; Sofia, Giulia; Tian, Yi; & Tarolli, Paolo. (2018). Open-pit mine geomorphic changes analysis using multi-temporal UAV survey. Environmental Earth Sciences, 77, 220. https://doi.org/10.1007/s12665-018-7383-9
Zheng, Yuexin; Zhang, Guangxin; Wu, Yanfeng; Xu, Y. Jun; & Dai, Changlei. (2019). Dam Effects on Downstream Riparian Wetlands: The Nenjiang River, Northeast China. Water, 11(10), 2038. https://doi.org/10.3390/w11102038