تهیه نقشه گنبد نمکی جهانی و مناطق متأثر از گنبد نمکی با استفاده از مدل شبکه عصبی مصنوعی و داده‌های ماهواره لندست 8

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه سنجش از دور و GIS، دانشکده علوم زمین، دانشگاه شهید چمران اهواز

2 استاد، گروه سنجش از دور و GIS، دانشکده علوم زمین، دانشگاه شهید چمران اهواز

3 استادیار، گروه زمین شناسی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز

4 مربی، گروه سنجش از دور و GIS، دانشکده علوم زمین، دانشگاه شهید چمران اهواز

10.22034/gmpj.2021.157522.0

چکیده

 از پدیده های مهم و قابل توجه در امر زمین‌شناسی میتوان به تشکیلات تبخیری از جمله گنبدهای نمکی اشاره کرد. تشکیلات تبخیری از جمله سازندهای زمین‌شناسی هستند که از نظر جغرافیایی دارای گسترش چشمگیری میباشند. گنبدهای نمکی و رسوبات مجاور آن نمونه‌ای از یک محیط زمین شناسی پیچیده است. مطالعه آنها به خاطر ویژگیهای منحصر به فرد نمک از لحاظ تکتونیکی و سنگ شناسی، برهم‌کنش های قوی میان جریان‌های حرکتی و حرارتی، وجود منابع مهم از لحاظ جنبه اقتصادی و تأثیرگذاری این حوزه‌های تبخیری در کیفیت منابع مناطق پیرامون گنبد‌های نمکی از اهمیت شایانی در زمین شناسی، مدیریت و برنامه‌ریزی منابع انسانی برخوردار است. فناوری سنجش از دور در سالهای اخیر نقش پررنگی در کسب اطلاعات از این پدیده‌های منحصر به فرد بر عهده دارد. هدف از پژوهش استفاده از روش شبکه عصبی مصنوعی و تحلیل مؤلفه‌های اصلی(PCA) برای طبقه‌بندی و تهیه نقشه گنبد‌نمکی جهانی و مناطق متأثر از گنبد نمکی با استفاده از تصاویر سنجنده‌های OLI ماهواره لندست8، جهت تحلیل و بررسی از لحاظ پوشش و نوع کانی‌های تشکیل دهنده آن می‌باشد. نتایج در هشت کلاس مجزا طبقه‌بندی شده نشان‌داده شد که کلاس ماسه-نمک با 100 درصد صحت، رس، 05/96 درصد، گچ- نمک 03/99 درصد، سنگ آهک 100 درصد، گیاهان 73/96 درصد، ماسه سنگ 67/94 درصد، صخره های نمکی 09/96 درصد، خاک‌های گچی 58/93 درصد، شیل 73/86 طبقه بندی شدند. در این پژوهش روش شبکه عصبی به ترتیب با صحت کل 3501/95 درصد و ضریب کاپا 37/94 درصد عملکرد مناسبی در طبقه‌بندی، تهیه نقشه محدوده مورد مطالعه داشته است.

کلیدواژه‌ها


عنوان مقاله [English]

Remote Sensing, Landsat 8, Salt Dome, Classification, Artificial Neural Network

نویسندگان [English]

  • farhad kavoosi 1
  • kazem rangzan 2
  • Babak Babak Samani 3
  • Azim Saberi 4
1 ahwaz university
2 ahwaz university
3 ahwaz university
4 ahwaz university
چکیده [English]

 
Introduction
At the present time, remote sensing can provide the opportunity for mapping lithology, mineralogy, altered rocks, and environmental pollution, and is a useful tool for acquiring basic information, particularly on a regional scale. Significant phenomena in the field of geology are evapotranspiration, including salt domes. Evaporative structures are geological formations that are geographically expansive. One of the important morphological phenomena associated with this evapotranspiration is the structural development of salt domes. Salt domes The structures of geology are a dome of the shape formed by the movement of salt and its ascent in the diaphysmic mechanism. Salt domes and adjacent sediments are examples of a complex geological environment. Their study is due to the unique tectonic and lithological properties of salt, The existence of important resources in terms of the economic aspect and the effect of these evapotranspiration zones on the quality of resources around the salt domes is of great importance in geology, management, and human resource planning. Remote sensing technology in recent years has taken a strong role in obtaining information from these unique phenomena. So satellite imagery classification is one of the most important stages in the interpretation of satellite data, which allows users to produce various types of information, such as the production of covert maps, usage and discoveries of changes and influences.
Methodology
This section consists of three steps: (1) In this study, the Landsat-8 satellite imaging imaging (OLI) image sensor on November 15, 2014 was used to carry out remote sensing studies for the classification and mapping of the global salt dome.(2) The data preprocessing stage is one of the most important steps in image processing, since all subsequent calculations are based on the image produced at this stage. The type and type of operation of this operation will vary depending on various factors such as the type of data used and the purpose of the research. In the process of preprocessing satellite imagery, it is necessary to remove any errors, such as atmospheric effects, before the identification and extraction of information.(3) PCA: The principal components analysis method is aimed at compressing the dataset in different bands of an image and in order to remove similar information. The main components of decomposition in the interpretation of digital remote sensing data are of great importance. The most important benefits of the main components of collecting and aggregating information on phenomena in different bands are less in a number of bands or components, in other words, the main components To remove excess data in satellite data, it is used extensively. The output of this method is usually a new and limited range of bands whose correlation between them is minimized, so they can be interpreted non-dependent on the original data. In general there are three stages in the classification of the neural network. The first step is an educational process using input data and educational prototypes. The second step is the validation phase that determines the success of the training and network authentication, validating and testing the network by some non-teaching samples. The last grade is the classification stage, in which a map is classified based on educational relationships during the alignment phase.
Results and discussion
When the results of the tables are examined, several conclusions are drawn:
It was observed that the class of sand-salt with 100% accuracy, clay class, 96.05%, gypsum-salt class, 99.33%, limestone class 100%, class of plants, 96/73%, sandstone class, 94/67% Salt rocks are 96.9%, gypsum soils are 93/58%. It is noteworthy that the lowest accuracy between classes is shale, which is 86.73%. Of the 185 pixels of this class, 170 pixels are correctly positioned on the shale floor, 1 pixel on the floor of the gypsum salt, 1 pixel on the clay, 3 pixels on the floor of the plants, 2 pixels on the sandstone floor, 1 pixel on the rock floor Salt and 7 pixels in gypsum soils are in error in other classes. ), It can be said that the artificial network method with the correctness of the total of 95/3501% and Kappa coefficient of 94.37% have a good performance in classifying and preparing the map of the study area.
Conclusion
With the launch of Landsat in 1972, remote sensing technology has opened a new horizons in the planning, research, assessment and management of natural resources. This phenomenon provides a new method for efficient and effective mapping of various terrain zones, including salt domes. Detailed information can be extracted from temporary satellite data and used as input for decision making in geographic information systems. Evaporative structures are among the geological formations that are geographically expansive in our country, including Zagros china. One of the phenomena of the morphological index associated with this evaporation structure is the structural development of salt domes. The study of salt domes due to the unique properties of salt in terms of tectonic and lithology and strong interactions between motor and thermal flows is of great importance in geology. In this study, the artificial neural skull method and Landsat 8 satellite imagery were used to classify and prepare a global salt dome map.
 

کلیدواژه‌ها [English]

  • : Remote Sensing
  • Landsat 8
  • Salt dome
  • Classification
  • Artificial Neural Network
  • آرخی، صالح، 1393، تهیه نقشه کاربری اراضی دشت عباس ایلام با استفاده از روشهای شبکه عصبی مصنوعی، ماشین بردار پشتیبان و حداکثر احتمال، نشریه مرتع­داری، دانشگاه کشاورزی و مرتع داری گرگان، سال اول، شماره 2، صص 30-43.
  • قاسمیان، نفیسه و آخوندزاده، مهدی، 1395، مقایسه روش­های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و درخت تصمیم گیری در شناسایی ابر در تصاویر ماهواره ای لندست8، نشریه علمی- ترویجی مهندسی نقشه­برداری و اطلاعات مکانی ، سال هفتم، شماره4، صص. 49-65.
  • پورکاسب، هوشنگ. و دمیری، کاظم. و رنگزن، کاظم و سعیدی، سعیده.، 1392، بارزسازی واحدهای سنگ­شناختی گنبد نمکی جهانی (فیروزآباد)، با استفاده از تحلیل مؤلفه های اصلی ، مجله زمین شناسی اقتصادی، شماره 1، جلد 5، صص 83- 9.
  • پورکرمانی، محسن و آرین، مهران، 1377، گنبدهای نمکی ایران مرکزی، مجله علوم انسانی، دانشگاه سیستان و بلوچستان، صص30-41.
  • زمردیان، محمد جواد، 1383، ژئومورفولوژی ایران، انتشارات دانشگاه فردوسی، چاپ دوم، مشهد. صص 268.
  • علوی پناه، سیدکاظم،1387 ، سنجش از دور حرارتی و کاربرد آن در علوم زمین،  انتشارات تهران، چاپ دوم، صص 552ص.
  • مختاری، محمد حسین و نجفی، احمد، 1394، مقایسه روشهای طبقه­بندی ماشین بردار پشتیبان و شبکه عصبی مصنوعی در استخراج کاربری­های اراضی از تصاویر ماهوارهای لندست TM، مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، سال 19، شماره 72، صص. 35-44.
  • مهرابی، علی و داستانپور، محمد و رادفر، شهباز و وزیری، محمدرضا و درخشانی، رضا،1394، شناسایی‌خطواره‌های‌گسلی‌کمربند ‌چین‌خورده-‌راندگی زاگرس بر‌پایه‌ تفسیر تصاویر ماهواره‌ای‌و ‌تعیین ‌ارتباط‌آنها‌ با موقعیت ‌ گنبدهای نمکی رخنمون‌یافته سری هرمز ‌با ‌استفاده ‌از ‌تحلیل‌های‌GIS ، فصلنامه علوم زمین، سال 24،  شماره95، صص17تا 
  • Ala, M., 1974. Salt diapirism in southern Iran. AAPG Bulletin, 58(9): 1758-1770.
  • Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American journal of Science, 304(1): 1-20.
  • Amiri, A., Chavooshi, H. and Amini, J., 2007. Comparison of Three Satellite Image Classification: Fuzzy, Neural Network and Minimum Distance, Geomatic Conference, National Cartographic Center, Tehran.(In Persian).
  • Arekhi, S. and Adibnejad, M., 2011. Efficiency assessment of the of Support Vector Machines for land use classification using Landsat ETM+ data (Case study: Ilam Dam Catchment).
  • Bedini, E., 2009. Mapping lithology of the Sarfartoq carbonatite complex, southern West Greenland, using HyMap imaging spectrometer data. Remote Sensing of Environment, 113(6): 1208-1219.
  • Ben-Dor, E., Patkin, K., Banin, A. and Karnieli, A., 2002. Mapping of several soil properties using DAIS-7915 hyperspectral scanner data-a case study over clayey soils in Israel. International Journal of Remote Sensing, 23(6): 1043-1062.
  • Colman-Sadd, S., 1978. Fold development in Zagros simply folded belt, Southwest Iran. AAPG Bulletin, 62(6): 984-1003.
  • Dixon, B. and Candade, N., 2008. Multispectral landuse classification using neural networks and support vector machines: one or the other, or both? International Journal of Remote Sensing, 29(4): 1185-1206.
  • Evans, D.G. and Nunn, J.A., 1989. Free thermohaline convection in sediments surrounding a salt column. Journal of Geophysical Research: Solid Earth, 94(B9): 12413-12422.
  • Farhoudi, G., Faghih, A., Mosleh, H., Keshavarz, T., Heyhat, M. and Rahnama-Rad, J., 2008. Using GIS/RS techniques to interpret different aspects of salt domes in southern Iran, Geophysical Research Abstracts, 652-661.
  • Farifteh, J., Farshad, A. and George, R., 2006. Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma, 130(3): 191-206.
  • Farifteh, J., Van Der Meer, F. and Carranza, E., 2007. Similarity measures for spectral discrimination of salt‐affected soils. International Journal of Remote Sensing, 28(23): 5273-5293.
  • Foody, G.M., 2000. Mapping Land Cover from Remotely Sensed Data with a Softened Feedforward Neural Network Classification. Journal of Intelligent and Robotic Systems, 29(4): 433-449.
  • Goudie, A., 2004. Encyclopedia of geomorphology. Psychology Press, Routldge.
  • Harrison, J., 1931. Salt domes in Persia. Journal of institute of petroleum technology, 17: 300-320.
  • Hick, P. and Russell, W., 1990. Some spectral considerations for remote sensing of soil salinity. Soil Research, 28(3): 417-431.
  • Jackson, M. and Talbot, C., 1994. Advances in salt tectonics. Continental deformation: 159-179.
  • Jaros, J., 1981. The Zagros Mountains, its development and analysis of tectonic styles. Vìst. Ústø. Úst. Geol, 56(2): 113-120.
  • Khan, N.M., Rastoskuev, V.V., Sato, Y. and Shiozawa, S., 2005. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agricultural Water Management, 77(1): 96-109.
  • Kruse, F.A., Boardman, J.W. and Huntington, J.F., 2003. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1388-1400.
  • Leturmy, P., Molinaro, M. and de Lamotte, D.F., 2010. Structure, timing and morphological signature of hidden reverse basement faults in the Fars Arc of the Zagros (Iran). Geological Society, London, Special Publications, 330(1): 121-138.
  • Loveland, T.R., Reed, B.C., Brown, J.F., Ohlen, D.O., Zhu, Z., Yang, L. and Merchant, J.W., 2000. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing, 21(6-7): 1303-1330
  • Mas, J.-F., 2003. An artificial neural networks approach to map land use/cover using Landsat imagery and ancillary data, Geoscience and Remote Sensing Symposium, 2003. IGARSS'03. Proceedings. 2003 IEEE International. IEEE, pp. 3498-3500.
  • Metternicht, G., 2001. Assessing temporal and spatial changes of salinity using fuzzy logic, remote sensing and GIS. Foundations of an expert system. Ecological Modelling, 144(2): 163-179.
  • Metternicht, G.I. and Zinck, J., 2003. Remote sensing of soil salinity: potentials and constraints. Remote sensing of Environment, 85(1): 1-20.
  • Mougenot, B., Pouget, M. and Epema, G., 1993. Remote sensing of salt affected soils. Remote Sensing Reviews, 7(3-4): 241-259.
  • Nairn, A. and Alsharhan, A., 1997. Sedimentary basins and petroleum geology of the Middle East. Elsevier.
  • O’Brien, C., 1957. Salt diapirism in south Persia. Geologie en Mijnbouw, 19(9): 357-376.
  • Omo-Irabor, O. and Oduyemi, K., 2007. A hybrid image classification approach for the systematic analysis of land cover (LC) changes in the Niger Delta region. Built and Natural Environment, School of Contemporary Sciences, University of Abertay, Scotland, UK.
  • Rangzan, K., 1995. Morpho-tectonic study of Zagros structural belt of SW Iran using remote sensing techniques. Journal of the Indian Society of Remote Sensing, 23(4): 211-224.
  • Rao, B., Sharma, R., Ravi Sankar, T., Das, S., Dwivedi, R., Thammappa, S. and Venkataratnam, L., 1995. Spectral behaviour of salt-affected soils. International Journal of Remote Sensing, 16(12): 2125-2136.
  • Rowan, L.C., Goetz, A.F. and Ashley, R.P., 1977. Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images. Geophysics, 42(3): 522-535.
  • Rowan, L.C. and Mars, J.C., 2003. Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote sensing of Environment, 84(3): 350-366.
  • Sabins, F.F., 1997. Remote sensing, principles and interpretation. 3rd edn. New York: Freeman.
  • Stöcklin, J., 1974. Possible Ancient Continental Margins in Iran. In: C.A. Burk and C.L. Drake (Editors), The Geology of Continental Margins. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 873-887.
  • Tangestani, M.H., Mazhari, N., Agar, B. and Moore, F., 2008. Evaluating Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for alteration zone enhancement in a semi‐arid area, northern Shahr‐e‐Babak, SE Iran. International Journal of Remote Sensing, 29(10): 2833-2850.
  • Tayebi, M.H., Tangestani, M.H. and Roosta, H., 2013. Mapping salt diapirs and salt diapir-affected areas using MLP neural network model and ASTER data. International Journal of Digital Earth, 6(2): 143-157.
  • Twiss, R.J. and Moores, E.M., 2007. Structural Geology. New York-W.H. Freeman. PP: 532
  • Waltham, T., 2008. Salt terrains of Iran. Geology Today, 24(5): 188-194.
  • Warren, J.K., 2010. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Science Reviews, 98(3): 217-268.
  • Wijaya, A., 2005. Application of multi-stage classification to detect illegal logging with the use of multi-source data. International Institute for Geo-Information Sience and Earth Observation, Enschede, The Netherlands.
  • Yao, X., Tham, L.G. and Dai, F.C., 2008. Landslide susceptibility mapping based on Support Vector Machine: A case study on natural slopes of Hong Kong, China. Geomorphology, 101(4): 572-582.