بررسی ارتباط عوامل موثر بر وقوع زمین لغزش در مدل آنتروپی شانون با دو ریکرد WOE و LNRF به منظور پهنه بندی حساسیت زمین لغزش در حوضه آبخیز زیوه ارومیه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت حوزه‌های آبخیز، ارومیه، دانشگاه ارومیه، ارومیه، ایران

2 دانشیار، گروه مرتع و آبخیزداری، دانشکده منابع طبیعی دانشگاه ارومیه، ارومیه، ایران

10.22034/gmpj.2022.340292.1348

چکیده

مستلزم برنامه‌ریزی، انجام اقدامات مناسب و زیربنای اصلی تهیه نقشه‌هایی با صحت و دقت بالا در مدیریت زمین‌لغزش‌ها شناسایی عوامل موثر در وقوع زمین‌لغزش‌ها می‌باشد. در این مطالعه هدف اصلی بررسی ارتباط بین عوامل موثر شناسایی شده با استفاده از مدل آنتروپی شانون و مقایسه آن با نتایج مدل‌های WOE و LNRF در حوضه آبخیز زیوه ارومیه می‌باشد. بعد از ثبت تعداد 167 زمین‌لغزش، مهمترین عوامل موثر با توجه به مطالعه پژوهش‌های قبلی و مشاهدات و بازدیدهای مکرر صحرایی در سه طبقه شاخص‌های مورفومتری، عوامل محیطی و انسانی دسته‌بندی شدند. نقشه‌های عوامل محیطی و انسانی در محیط ArcGIS10.5 و نقشه‌ شاخص‌های ژئومورفومتری در SAGA_GIS.6.4 از طریق مدل رقومی ارتفاعی با پیکسل سایز (5/12*5/12) تهیه شد. نتایج نشان داد که مهترین عوامل موثر بر وقوع زمین‌لغزش در مدل آنتروپی شانون به ترتیب فاصله از آبراهه، شاخص موقعیت توپوگرافی، فاصله از گسل و کاربری اراضی و کمترین اثر عوامل موثر بر وقوع زمین‌لغزش به ترتیب شامل عوامل بارندگی، ارتفاع و فاکتور LS بوده است. در مدل‌های WOE و LNRF مهمترین زیر عامل‌های موثر در رده‌های عوامل سنگ-شناسی و کاربری اراضی، شاخص خیسی توپوگرافی، فاصله از آبراهه و گسل بوده است. بنابراین بین نتایج مدل آنترپی شانون در شناسایی عوامل موثر با نتایج مدل‌های فوق می‌توان گفت که ارتباط خوبی وجود دارد. ارزیابی مدل‌ها با استفاده از منحنی ROC نشان دادکه مدل آنتروپی شانون دارای عملکرد عالی و دو مدل LNRF و WOE دارای عملکرد خوب و خیلی خوب در پهنه‌بندی حساسیت زمین‌لغزش‌ها می‌باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of affecting factors landslide occurrence in shannon entropy model with two WOE and LNRF approaches in order to zoning sensitivity landslide in Ziveh watershed of Urmia.

نویسندگان [English]

  • Abdulaziz Hanifinia 1
  • Hirad Abghari 2
1 PH.D. Student of Watershed Management, Urmia University, Urmia
2 Department of Range and Watershed Management, Faculty of Natural resources, Urmia University, IRAN.
چکیده [English]

Introduction

Mass movements (landslides, creeps, falls, mudflows, etc.) as one of the natural disasters, many environmental and human factors can affect their occurrence. The role of us humans in the occurrence of these movements in relation to environmental factors such as tectonics, rainfall, altitude, slope, etc. is very small. On the contrary, it is very much related to human factors such as land use change, irrigation and road construction, which are among the most important of these factors.

Landslides are generally complex geomorphological features. Landslide sensitivity analysis requires consideration of their environmental context. Given the importance of spatial variables in natural hazard management, a large number of researchers have investigated the effects of these factors in modeling landslide risk and sensitivity. Landslides are one of the natural hazards that most people around the world suffer a lot of human and financial losses due to this phenomenon. Landslide risk management is critical to reduce the number of occurrences due to a set of topographic, geoenvironmental, hydrological and geological conditions.



Methodology

Ziveh watershed with an area of 21686 hectares is located in West Azarbaijan province, southwest of Urmia city and in Margor Silvana section. This basin has an average height of 2265 meters, a minimum height of 1500 meters, a maximum height of 3479 meters and an average slope of 16.5 degrees. The average annual rainfall is estimated at 395 mm.

Through extensive field visits and GPS, the location of landslides that could be accessed for recording was first captured as a polygon. The rest were recorded through Google Earth images. A total of 167 landslide polygons were identified in the area. By reviewing internal and external sources along with notes on the factors affecting the occurrence of each slip during the harvest of information layer points, a total of sixteen environmental, human and morphometric indicators were considered. Digital elevation model map with a resolution of 12.5 12 12.5 meters from the University of Alaska site. Land use map was prepared from the archives of the General Directorate of Natural Resources of West Azerbaijan Province and modified using Google Earth images. Fault data and petrology of the region from the geological map of Silvana sheet (1: 100000), and from the statistics of 13 stations around the basin of the rainfall map using simple kriging interpolation method considering the common statistical period Prepared in 1392-1368.

Maps of environmental and human factors in ArcGIS10.5 environment and maps of geomorphometric indices in SAGA_GIS.6.4 were prepared through digital elevation model with pixel size (12.5 * 12.5). After obtaining the weight of each factor using Shannon entropy models, WOE and LNRF of landslide susceptibility zoning maps were prepared and evaluated using ROC curve.



Results and Discussion

The results of determining the most important factors affecting the occurrence of landslides and its relationship with effective factors in both WOE and LNRF models showed that Shannon entropy model in relation to identifying the most important factors influencing landslide occurrence and sensitivity zoning Landslides have been very effective in Ziveh watershed. According to the results of Shannon entropy model, the factors of topographic position, distance from waterway, distance from fault and land use had the greatest impact on the occurrence of landslides and the least effect related to annual rainfall, profile curvature and altitude. Investigating the weight of subclasses based on the frequency of the effect of each sub-factor for each layer of information expressing the greatest effect of geological factor, land use and then in the following categories of distance from waterway factor: fault and land use for WOE model And then LNRF. Therefore, there is a relatively good relationship between the effective weights identified from the sub-factors in the above models. Evaluation of zonation maps and landslide sensitivity using ROC curve shows that Shannon entropy model with sub-curve surface value (AUC = 0.915) has excellent performance in terms of quality and WOE and LNRF models respectively. With the area below the curve (AUC = 0.899 and (AUC = 0.860)), they have performed well in determining landslide sensitive areas.

Conclusion

The main purpose of this study was to investigate the relationship between factors and sub-factors affecting the occurrence of landslides. The results show that there is a good relationship between Shannon and WOE entropy models and then LNRF in identifying the effective factors based on the weight of the sub-factors. Therefore, in future research, these models can be used well in different conditions to zoning landslide sensitivity. According to the superior model of topographic position index, the factors of distance from waterway, distance from fault and land use have had the greatest effect on the occurrence of landslides. While in comparison, the effect of the weight of the sub-factors is more of the sub-factor that has an effect on the occurrence of landslides than the lithological factor. In general, it can be concluded that the role of natural factors in this basin has been more than human factors and the basin is inherently sensitive to landslides. In most cases, preventing and controlling landslide-prone areas due to natural causes is not possible or will not be easy and, if possible, can be very costly. The high sensitivity of this area to the occurrence of landslides to natural factors causes the least interference to cause a critical situation in the basin. Preparation of landslide susceptibility zoning map and identification of factors involved in controlling and implementing preventive measures in the instability of this basin and formulating a strategic plan - can be very efficient and management of unstable slopes in the study area Facilitate.

کلیدواژه‌ها [English]

  • Morphometric indices
  • Environmental factors
  • GIS
  • ROC curve
  • Ziveh watershed
ایلدرمی،ع.، عبادی، فواد.­1400. ارزیابی کارایی مدل‌های پهنه‌بندی خطر زمین لغزش حوضه آبخیز سد کردستان، پژوهش­های ژئومورفولوژی کمّی، دوره10، شماره2، صص83-64.
حنیفی نیا، ع.ع. 1398. پهنه­ بندی حساسیت زمین لغزش با استفاده از مدل­های داده­کاوی و آماری چند متغییره در حوضه آبخیز چریک آباد ارومیه. پایان­نامه کارشناسی ارشد، دانشگاه ارومیه.
حنیفی نیا، ع.ع.، نظرنژاد، ح.، نجفی. س.، کرنژادی، آ. 1399.  اولویت­بندی عامل­های مؤثر بر وقوع زمین لغزش و پهنه بندی حساسیت آن در آبخیز چریک آباد ارومیه با استفاده از مدل آنتروپی شانون.­ پژوهش­های آبخیزداری، دوره33، شماره4، 32-48.
حنیفی نیا، ع.ع.، نظرنژاد، ح.1400. اثر شاخص‌های مورفومتری در بهبود کارایی مدل‌های داده‌کاوی به‌منظور پهنه‌بندی حساسیت زمین‌لغزش حوضه آبخیز چریک‌آباد ارومیه. جغرافیا و مخاطرات محیطی، دوره10، شماره47،4-68.
عابدینی، م.، پیروزی، ا.، شکر­زاده.، ا. 1400. ارزیابی و پهنه‌بندی خطر زمین‌لغزش با استفاده از الگوریتم تطبیقی MABAC و ANP (مطالعه‌ی موردی: شهرستان نیر)­، پژوهشهای ژئومورفولوژی کمّی، دوره10، شماره 4، صص136-155.
کرنژادی، آ.، اونق، م.، پورقاسمی، ح.ر.، بهره مند، ع.ر.، معتمدی، م. 1399. پیش‌بینی حساسیت زمین‌لغزش با استفاده از مدل‌های ترکیبی فاصله ماهالانوبیس و یادگیری ماشین (مطالعه موردی: حوضه آبخیز اوغان، استان گلستان)، پژوهش­های دانش زمین، دوره11، شماره2،صص1-18.
همتی، ف. 1400. بررسی پتانسیل وقوع زمین‌لغزش در حوضه‌آبریز آبگلال ( استان خوزستان) با استفاده از مدل فازی. پژوهشهای ژئومورفولوژی کمّی، دوره10، شماره4، صص73-85.
Aditian, A., Kubota, T., & Shinohara, Y. (2018). Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology, 318, 101-111
Andersson-Sköld, Y., Bergman, R., Johansson, M., Persson, E., & Nyberg, L. (2013). Landslide risk management—A brief overview and example from Sweden of current situation and climate change. International Journal of Disaster Risk Reduction, 3, 44-61.
Batar, A. K., & Watanabe, T. (2021). Landslide susceptibility mapping and assessment using geospatial platforms and weights of evidence (WoE) method in the Indian Himalayan Region: recent developments, gaps, and future directions. ISPRS International Journal of Geo-Information, 10(3), 114.
Chambers, J. M., & Hastie, T. J. (2017). Statistical models. In Statistical models in S (pp. 13-44). Routledge.
Chen, W., Zhang, S., Li, R., & Shahabi, H. (2018). Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Science of the total environment, 644, 1006-1018.
De Reu, J.; Bourgeois, J.; Bats, M.; Zwertaegher, A.; Gelorini, V.; De Smedt, P.; Chu, W.; Antrop, M.; De
Maeyer, P.; Finke, P.; et al. Application of the topographic position index to heterogeneous landscapes.
Geomorphology 2013, 186, 29–49.
Ding, Q.; Chen, W.; Hong, H. Application of frequency ratio, weights of evidence and evidential belief function models in
landslide susceptibility mapping. Geocarto Int. 2017, 32, 619–639.
Eslami, M., Shadfar, S., Mohammadi-Torkashvand, A., & Pazira, E. (2019). Assessment of density area and LNRF models in landslide hazard zonation (case study: Alamout watershed, Qazvin Province, Iran). Acta Ecologica Sinica, 39(2), 173-180.
Gupta, R.P. and Joshi. B.C. (1990) Landslide hazard zoning using the GIS approach- A case study from the Ramganga catchment, Himalayas. Engineering Geology, 28(1):119-131.
He, H., Hu, D., Sun, Q., Zhu, L., & Liu, Y. (2019). A landslide susceptibility assessment method based on GIS technology and an AHP-weighted information content method: A case study of southern Anhui, China. ISPRS international journal of geo-information, 8(6), 266.
He, Q., Shahabi, H., Shirzadi, A., Li, S., Chen, W., Wang, N., ... & Ahmad, B. B. (2019). Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms. Science of the total environment, 663, 1-15.
Huang, F., Cao, Z., Guo, J., Jiang, S. H., Li, S., & Guo, Z. (2020). Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping. Catena, 191, 104580
Islam, A. R. M. T., Saha, A., Ghose, B., Pal, S. C., Chowdhuri, I., & Mallick, J. (2021). Landslide susceptibility modeling in a complex mountainous region of Sikkim Himalaya using new hybrid data mining approach. Geocarto International, 1-26.
Kavzoglu T, Kutlug Sahin E, Colkesen I, (2015). An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district, ORIGINAL PAPER 76:471–496.
Konstantinou, K. I., Ayu Rahmalia, D., Nurfitriana, I., & Ichihara, M. (2022). Fast Identification of Volcanic Tremor and Lahar Signals during the 2009 Redoubt Eruption Using Permutation Entropy and Supervised Machine Learning. Seismological Society of America, 93(1), 435-443.
Lotfi, F.H.; Fallahnejad, R. Imprecise Shannon’s entropy and multi attribute decision making. Entropy 2010,12, 53–62.
Lucchese, L. V., de Oliveira GG, Pedrollo OC. (2021). Investigation of the influence of nonoccurrence sampling on landslide susceptibility assessment using Artificial Neural Networks, Catena 198: 105067.
Magliulo, P.; Di, L.A.; Russo, F.; Zelano, A. Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: A case study in southern Italy. Nat Hazards 2008, 47, 411.
Mallick, J., Singh, R. K., AlAwadh, M. A., Islam, S., Khan, R. A., & Qureshi, M. N. (2018). GIS-based landslide susceptibility evaluation using fuzzy-AHP multi-criteria decision-making techniques in the Abha Watershed, Saudi Arabia. Environmental Earth Sciences, 77(7), 1-25.
Miao, F., Xie, X., Wu, Y., & Zhao, F. (2022). Data Mining and Deep Learning for Predicting the Displacement of “Step-like” Landslides. Sensors, 22(2), 481.
Möller, M., Koschitzki, T., Hartmann, K. J., & Jahn, R. (2012). Plausibility test of conceptual soil maps using relief parameters. Catena, 88(1), 57-67.
Myronidis, D., Papageorgiou, C., & Theophanous, S. (2016). Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP). Natural Hazards, 81(1), 245-263.
Nefeslioglu, H. A., Sezer, E. B. R. U., Gokceoglu, C., Bozkir, A. S., & Duman, T. Y. (2010). Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey. Mathematical Problems in Engineering, 2010.
Nhu, V. H., Janizadeh, S., Avand, M., Chen, W., Farzin, M., Omidvar, E., ... & Lee, S. (2020). Gis-based gully erosion susceptibility mapping: A comparison of computational ensemble data mining models. Applied Sciences, 10(6), 2039.
Panahi, M., Gayen, A., Pourghasemi, H. R., Rezaie, F., & Lee, S. (2020). Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms. Science of the Total Environment, 741, 139937.
Panahi, M., Rahmati, O., Rezaie, F., Lee, S., Mohammadi, F., & Conoscenti, C. (2022). Application of the group method of data handling (GMDH) approach for landslide susceptibility zonation using readily available spatial covariates. Catena, 208, 105779.
Perera, E. N. C., Jayawardana, D. T., Jayasinghe, P., & Ranagalage, M. (2019). Landslide vulnerability assessment based on entropy method: A case study from Kegalle district, Sri Lanka. Modeling Earth Systems and Environment, 5(4), 1635-1649
Pourghasemi, H. R., & Rossi, M. (2017). Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods. Theoretical and Applied Climatology, 130(1), 609-633.
Regmi, N. R., J. R. Giardino and J. D. Vitek. 2010. Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA, Geomorphology 115: 172-187.
Riley, S. J., DeGloria, S. D. & Elliot, R. (1999): A terrain ruggedness index that quantifies topographic
heterogeneity. – Intermountain Journal of Sciences 5: 23–27.
Samia, J.; Temme, A.; Bregt, A.K.; Wallinga, J.; Stuiver, J.; Guzzetti, F.; Ardizzone, F.; Rossi, M. Implementing landslide path dependency in landslide susceptibility modelling. Landslides 2018, 15, 2129–2144.
Sørensen, R., Zinko, U. & Seibert, J. (2006): On the calculation of the topographic wetness index: evaluation of different methods based on field observations. – Hydrology and Earth System Sciences 10: 101–112.
Sujatha, E. R. (2021). An integrated landslide susceptibility model to assess landslides along linear infrastructure for environmental management. Environmental Earth Sciences, 80(12), 1-15.
Sun, X., Chen, J., Bao, Y., Han, X., Zhan, J., & Peng, W. (2018). Landslide susceptibility mapping using logistic regression analysis along the Jinsha river and its tributaries close to Derong and Deqin County, southwestern China. ISPRS International Journal of Geo-Information, 7(11), 438.
Tsangaratos, P.; Ilia, I. Combining fuzzy logic and information theory for producing a landslide susceptibility model. In Proceedings of the 14th International Congress of the Geological Society of Greece, Thessaloniki, Greece, 25–27 May 2016; Volume 50, pp. 34–46.
Vargas-Cuervo, G., Rotigliano, E., & Conoscenti, C. (2019). Prediction of debris-avalanches and-flows triggered by a tropical storm by using a stochastic approach: An application to the events occurred in Mocoa (Colombia) on 1 April 2017. Geomorphology, 339, 31-43
Wang, F.; Cao, Y.; Liu, M. Risk Early-Warning method for natural disasters based on integration of entropy
and DEA model. Appl. Math. 2011, 2, 23–32.
Wang, H., Zhang, L., Yin, K., Luo, H., & Li, J. (2021). Landslide identification using machine learning. Geoscience Frontiers, 12(1), 351-364.