مدل جنگل تصادفی جهت شناسایی تحولات میکرو لندفرم‌ها با استفاده از پهپاد (مطالعه موردی: منطقه افجه در حوضه جاجرود 1397-1396)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ژئومورفولوژی، دانشکده علوم زمین دانشگاه شهید بهشتی

2 استاد گروه جغرافیا طبیعی، دانشکده علوم زمین دانشگاه شهید بهشتی

3 استادیار گروه جغرافیا طبیعی، دانشکده علوم زمین دانشگاه شهید بهشتی

10.22034/gmpj.2022.324517.1331

چکیده

حوضه آبریز جاجرود در دامنه جنوبی رشته‌کوه‌های البرز مرکزی تحت تأثیر تغییرات محیطی زیادی قرارگرفته است. در این مطالعه، از یک روش یکپارچه برای شناسایی تحولات میکرولندفرم‌های این حوضه بر اساس رویکرد ژئومورفولوژیکی ریزمقیاس با استفاده از داده‌های تصاویر پهپاد به همراه بررسی میدانی استفاده شد. از اندازه‌گیری تصاویر پهپادی با رزولوشن مکانی 10 سانتیمتر در بازه زمانی 1396 تا 1397 و الگوریتم‌ یادگیری ماشین با مدل جنگل تصادفی، نقشه‌های تحولات میکرولندفرم‌های حوضه جاجرود تهیه شد. این تصاویر با استفاده از نرم‌افزارهای ENVI 5.1 و ArcMap 10.3 تصحیح شد و سپس با استفاده کد نویسی در Python الگوریتم‌های موردنظر اجرا شد. واحدهای ریز زمین در حوضه با استفاده از این تصاویر طبقه‌بندی شدند. سپس، یک نقشه پهنه‌بندی تحولات از آن تهیه شد. تجزیه تحلیل تصاویر موجب یافتن الگوریتم مناسب برای شناسایی تحولات میکرو لندفرم‌ها با دقت بسیار بالا در زمان کوتاه شد. نتایج نشان داد که بیشترین تغییرات میکرولندفرم‌ها در این مدل، مربوط به تغییر پوشش گیاهی به خاک (64/66%) است. با توجه به نتایج به‌دست‌آمده مشخص شد که سیل منطقه افجه در سال 1397 سبب تغییرات عمده‌ای در منطقه شده است. میکرولندفرم‌های وابسته به پوشش گیاهی دچار تغییرات عمده شده است. به‌طوری‌که نمودار تغییرات آن را در بالاترین حد آشفتگی نسبت به میکرولندفرم‌های پایدارتر بستر سنگی رودخانه جاجرود نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Random forest model to identify changes in micro-landforms using UAV images (Case study: Afjeh region in Jajroud basin 1397-1397)

نویسندگان [English]

  • mohammad hasan Tavakol 1
  • Manijeh Ghahroudi Tali 2
  • Hasan Sadough 2
  • Khadijeh Alinoori 3
1 shahid beheshti university, Earth Science faculty
2 shahid beheshti university, Earth Science faculty
3 shahid beheshti university, Earth Science faculty
چکیده [English]

Extended Abstract



Introduction

Earth is an active element in the human environment and has an important impact on other elements and general environmental characteristics. Identification and classification of land features are very important for the environment, hydrological research, geological structure analysis and other geological research (Liu et al., 2015). The land surface consists of various landforms formed by internal and external processes (Salz et al., 2016). ). Therefore, landform classification is one of the most important methods in geomorphological mapping to better understand the surface processes (Boko, 2001). Dynamic changes in different periods and existing conditions such as climate change and human activities act differently and the difference of these changes in different periods has changed the behaviors and shape of landforms, so to plan and create different models and algorithms. It is necessary to identify and measure the behavior of dynamic changes and, consequently, to identify the evolution of microlandforms. The diversity of existing UV systems is increasing rapidly and is a powerful tool in geomorphology in detecting topographic shifts to link processes and dispersions to erosion and sedimentation rates and patterns (Jeans 2012). The use of UAVs allows us to do this. Allows us to achieve the desired results by using data with a resolution of at least 10 cm, 3 bands, wide coverage and short visits (Dulrents, 2019). Recently, new algorithms and convolutional neural networks (CNNs) have become a new way of calculating several problems, such as image classification, object recognition, semantic segmentation, and so on. CNN can display a hierarchical image of the input data with acceptable resolution of the desired features. In recent years, these types of neural networks have been used to solve several tasks from different fields, including remote sensing, in which they have great advantages due to various problems such as pixel-based classification for land use, target detection such as landforms. Roads have shown human and natural features and image sharpness (Dolrenets, 2019).



Methodology

In this study, the boundaries of the study area were limited using 1: 50000 topographic maps, Google Earth images, and UAV images. During a field visit to the area in the fall of 1398. UAV images were processed with ENVI 1.5 software, Arc GIS 3.10 and coded in Python program. The spatial resolution of these 10 cm images related to the two periods of 1396 and 1397 was prepared by the Ministry of Energy. Using UAV images and executing a random forest model with a map scale of 1.1000, the classification of microlandforms and their transformations were extracted. The steps and implementation method of the random forest algorithm are described below.

The method used in this study to extract microlandforms is pre-trained transfer networks.

In this method, the coefficients and weights trained to very deep neural networks were extracted using a UAV data set of a site with two images in the period of 1396 and 1397. In this method, very deep networks were used on this trained data in a ready-made manner with specific coefficients.

Results and Discussion

Classification based on stochastic forest model

In order to study the changes of different microlandforms, the random forest algorithm was used and the UAV images were classified into five classes of road, bedrock rocks, soil, vegetation and water with a scale (1: 1000).

g. A supervised learning algorithm was implemented on UAV images (1397-1397) using random forest. These images were used as input for both classification and regression. In the initial map, written with Python, the three major classes of soil microforms, vegetation, and galls were identified and classified into five classes by classification (Figure 5).

Changes of microlandforms with stochastic forest model in the period 1397-1397

After classifying and creating a class on UAV images using random forest algorithm, changes in microlandforms were identified during the period 1397-1397. This algorithm with an average accuracy of 89%, determined that the changes of Afjeh microlandforms in the period 1397-1397 occurred in the range of vegetation and soil (Figure 6). So that the first rank of the most area changes in vegetation to soil was 66.64 and the second rank of soil to vegetation was 16.59% (Table 1, Figure 7); These changes were observed due to the greater dispersion of vegetation around the Jajroud River and the rock bed in the west of the study area. Unchanged areas in the bedrock of the river and soil cover and related microforms were observed in the central region of Afjeh.

Conclusion

In addition to field observations, the accuracy criterion was used to evaluate the evolution of microlandforms in the Afjeh region; The ratio of correctly classified pixels to total pixels was considered. The percentage given for the accuracy was obtained from this criterion. The study of the effect of this model on accuracy showed that the use of the features obtained from this network in the ability to distinguish different classes in UAV images is very useful. Thus creating a near-ideal model in the random forest algorithm. The results showed that the most changes of microlandforms in this model are related to the change of vegetation to soil (66.64%) and in the next rank is the change of soil to vegetation (16.59%). According to the obtained results, it was found that the flood in Afjeh region in 1397 has caused major changes in the region. As it has the greatest impact on the vegetation of the region, which has destroyed a large percentage of it. Vegetation-dependent microlandforms have also undergone major changes, so that the graph of its changes shows the highest level of turbulence compared to the more stable microlandforms of the Jajroud river bed. The diversion of the river is one of the changes observed in this period. In addition to the above, due to declining rainfall, recent droughts and floods; Sheetwash, ditches and galleys are more prevalent in the study area, indicating large changes in microlandforms and high erosion rates in the study area.

کلیدواژه‌ها [English]

  • Keywords: UAV
  • Jajroud Basin
  • Microlandform
  • Random Forest Forest Model
آراء، هایده. 1395. لندفرم ها و طبقه بندی آنها در علم ژئومورفولوژی (مطالعه موردی: حوضه آبریز جاجرود در شمال شرق تهران). فصلنامه علمی-پژوهشی اطلاعات جغرافیایی سپهر  22-17، (1-86) 22.## 
خدری غریب وند. ل، م. قهرودی تالی، ف. سبک خیز، ع. سپهر، 1397. بررسی روند تکاملی پهنه های گلی باتلاق گاوخونی با استفاده از مدل فرکتال، جغرافیا و برنامه ریزی محیطی، نسخه 27.## 
رعیتی منیره، امیر اکرم، حمیر رضا غفاریان مالمیری، عادل سپهر. 1396، مقایسه کارایی برخی الگوریتم های طبقه‌بندی در مطالعه تغییرات لندفرمهای بیابانی دشت یزد – اردکان، پژوهشهای ژئو مورفولوژی کمی، سال 6 شماره 1، تاسبتان 96، ص 57-73.## 
شایان سیاوش، علی احمد آبادی، مجتبی یمانی، 1390. ارزیابی شاخصهای ژئومورفومتریکبه روش وود در طبقه بندب لند فرم­های مناطق خشک برنامه‌ریزی و آمایش فضا، جلد ۱۶ شماره ۱ صفحات ۱۰۵-۱۲۰.## 
قهرودی تالی. م، علی نوری، خ. 1393. ردیابی مخاطرات پلایای حوض سلطان با بررسی آشفتگی میکرولندفرم­ها، مدیریت مخاطرات محیطی، دوره 1، شماره2، 241-252.
قهرودی تالی. م، علی نوری، خ. 1396. تغییرات مکانی پلایای حوض سلطان در دوره 2016-1991, پژوهش های ژئومورفولوژی کمی، شمار4، 20، صفحات:103-120.## 
قهرودی تالی. م، خدری غریب وند، ل. 1393. بررسی آشفتگی میکرو لندفرم­های تالاب گاوخونی، نسخه 2, صفحات:44-51.## 
مکرم مرضیه، سعید نگهبان.1394، طبقه‌بندی لندفرمها با استفاده از شبکه‌های عصبی خود سازنده، فصلنامه کواترنری ایران دوره 1 شماره 3 پاییز 94 ص 225-238.## 
نعیمی نظام آباد. علی؛ منیژه قهرودی تالی؛ محمد رضا ثروتی، 1388، آشکار سازی تغییرات لندفرمهای ساحلی منطقه عسلویه، جغرافیایی سرزمین، صفحه 59-65.## 
Bocco, G., Mendoza, M., & Velázquez, A. (2001). Remote sensing and GIS-based regional geomorphological mapping a tool for land use planning in developing countries. Geomorphology, 39(3-4), 211-219.## ‏
Bernal, I., Tavera, H., Sulla, W., Arredondo, L., & Oyola, J. (2018). Geomorphology Characterization of Ica Basin and Its Influence on the Dynamic Response of Soils for Urban Seismic Hazards in Ica, Peru. International Journal of Geophysics, 2018.## ‏
De Laurentiis, L., Pomente, A., Del Frate, F., & Schiavon, G. (2019). Capsule and convolutional neural network-based SAR ship classification in Sentinel-1 data. In Active and Passive Microwave Remote Sensing for Environmental Monitoring III (Vol. 11154, p. 1115405). International Society for Optics and Photonics.## ‏
Debnath, J., Pan, N. D., Ahmed, I., & Bhowmik, M. (2017). Channel migration and its impact on land use/land cover using RS and GIS: A study on Khowai River of Tripura, North-East India. The Egyptian Journal of Remote Sensing and Space Science, 20(2), 197-210.## ‏
De Laurentiis, L., Pomente, A., Del Frate, F., & Schiavon, G. (2019). Capsule and convolutional neural network-based SAR ship classification in Sentinel-1 data. In Active and Passive Microwave Remote Sensing for Environmental Monitoring III (Vol. 11154, p. 1115405). International Society for Optics and Photonics.## ‏
Evans, I. S. (2012). Geomorphometry and landform mapping: What is a landform? Geomorphology, 137(1), 94-106.## ‏
Greene, H.G., Bizzarro, J.J., O Connell, V.M. and Brylinsky, C.K. (2007). Construction of digital potential marine benthic habitat maps using a coded classification scheme and its applications. Geological Association of Canada 47: 147-162.## 
Hara, Masatoshi, Kazuhiro Hirata, Michiro Fujihara and KIeiich Oono. (1996). Vegetation structure in relation to micro-landform in an evergreen broad-leaved forest on Amami Ohshima Island, south-west Japan. Ecological Research 11: 325-337.## 
Haque, M. I., & Basak, R. (2017). Land cover change detection using GIS and remote sensing techniques: A spatio-temporal study on Tanguar Haor, Sunamganj, Bangladesh. The Egyptian Journal of Remote Sensing and Space Science, 20(2), 251-263.## ‏
Lavee, H., Imeson, A. C., & Sarah, P. (1998). The impact of climate change on geomorphology and desertification along a Mediterranean‐arid transect. Land degradation & development, 9(5), 407-422.## ‏
Loan ,T.K. Ho. ,and Masatomo Umitsu. (2011). Micro-landform classification and flood hazard assessment of the Thu Bon alluvial plain, central Vietnam via an integrated method utilizing remotely sensed data. Applied Geography 31: 1082-1093.## 
Li, Hong Chun, Chen-Feng You, Teh-Lung Ku, Xiao-Mei Xu, H. Paul Buchheim, NaiJung Wan, Ruo-Mei Wang,and Min-Lin Shen. (2008). Isotopic and geochemical evidence of palaeoclimate changes in Salton Basin, California, during the past 20 kyr: 2. 87Sr/86Sr ratio in lake tufa as an indicator of connection between Colorado River and Salton Basin. Palaeogeography, Palaeoclimatology.Palaeoecology 2–3 (259)198-212.## 
Liu, B., & Coulthard, T. (2017). In Dynamic Equilibrium: The Autogenic Landform Change in a Fluvial-Aeolian Interacting Field. In Fifth International Planetary Dunes Workshop (Vol. 1961, p. 3001).‏
Lavee, H., Imeson, A. C., & Sarah, P. (1998). The impact of climate change on geomorphology and desertification along a Mediterranean‐arid transect. Land degradation & development, 9(5), 407-422.## ‏
Madden, C. J., K. Goodin, B. Allee, M. Finkbeiner,and D. Bamford. (2008). Coastal and Marine Ecological Classification Standard. NOAA and NatureServe 77.## 
Nagamatsu, Dai., and Osamu Miura. (1997). Soil disturbance regime in relation to microscale landforms and its effects on vegetation structure in a hilly area in Japan Plant. Ecology 133: 191–200.## 
Panda, P. K., & Narasimham, M. L. (2018). Dynamic Geomorphology of the Kosi Fan in Consequence to a Mega-Avulsion Aided by Space Inputs and Hydraulic Modeling. J Remote Sensing & GIS 7: 238. Doi: 10.4172/2469-4134.1000238 Page 2 of 6 J Remote Sensing & GIS, an open access journal ISSN: 2469-4134 Volume 7• Issue 2• 1000238. Figure, 3, 3.## ‏
Thoms, M. C., Piégay, H., & Parsons, M. (2018). What do you mean, ‘resilient geomorphic systems’? Geomorphology, 305, 8-19.## ‏
Wang Z, Cheng Q, Cao Li, Qingling Xia, and Zhijun Chen  .(2006). Fractal modelling of the microstructure property of quartz mylonite during deformation process. Math Geol 39(1):53–68.## 
Wei, Z., Han, Y., Li, M., Yang, K., Yang, Y., Luo, Y., & Ong, S. H. (2017). A small UAV based multi-temporal image registration for dynamic agricultural terrace monitoring. Remote Sensing, 9(9), 904.## ‏
Wondzell, S. M., Cunningham, G. L., & Bachelet, D. (1996). Relationships between landforms, geomorphic processes, and plant communities on a watershed in the northern Chihuahuan Desert. Landscape Ecology, 11(6), 351-362.‏
Tom Spencer  Larissa Naylor  Stuart Lane  Stephen Darby  Mark Macklin  Francis Magilligan Iris Möller . (2016) . Stormy geomorphology: an introduction to the Special Issue.## 
Wondzell, S. M., Cunningham, G. L., & Bachelet, D. (1996). Relationships between landforms, geomorphic processes, and plant communities on a watershed in the northern Chihuahuan Desert. Landscape Ecology, 11(6), 351-362.## 
He, H., Lai, Z., & Mischke, S. (2016). Meteorological impacts on landform changes. Advances in Meteorology.##