ارزیابی ژئودایورسیتی حوضه آبریز رودخانه درونگر با استفاده از روش اصلاح شده سرانو و رویز-فلنو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه جغرافیا، دانشکده ادبیات، دانشگاه فردوسی مشهد

2 دانشیار گروه جغرافیا، دانشکده ادبیات، دانشگاه فردوسی مشهد

3 استاد گروه علوم خاک، دانشکده کشاورزی، دانشگاه فردوسی مشهد

10.22034/gmpj.2022.334069.1340

چکیده

تنوع زمینی از موضوعات مهم علوم جغرافیایی است که در چند دهه اخیر مورد توجه قرار گرفته است. تغییرات شدید کاربری و بهره‌برداری‌های بیش از حد انسان از منابع محیطی، بیودایورسیتی و ژئودایورسیتی را به شدت تحت تاثیر قرار داده‌اند. در این تحقیق برای ارزیابی تنوع زمینی از شاخص کمی تنوع زمینی رویز- فلنو استفاده شده و نتایج از طریق مشاهدات میدانی و مقایسه با نقشه ژئومورفولوژی اعتبارسنجی شده است. منطقه مورد مطالعه از نظر ژئومورفولوژی ساختمانی در زون کپه داغ- هزار مسجد و در شمال‌شرق ایران قرار گرفته است. حوضه آبریز درونگر در نقطه پیچیده و پر تنش از دیدگاه فرآیندها و رویدادهای زمین شناختی قرار دارد و شواهد ژئومورفولوژیکی حوضه مورد بحث، حاکی از ادامه فعالیت‌های نئوتکتونیکی در دوران پلیو-کواترنر دارد. هدف اصلی تحقیق ارزیابی کمی تنوع زمینی حوضه آبریز رودخانه درونگر با استفاده از تجزیه و تحلیل‌های GIS و مبتنی بر شاخص ژئودایورسیتی است. داده‌های مورد استفاده در این مقاله شامل مدل رقومی ارتفاع نوع ASTER، نقشه‌های زمین شناسی 1:250000 سازمان زمین‌شناسی کشور و تصاویر ماهواره‌‌ای گوگل ارث بود. نتایج حاصل از پژوهش نشان داد که حدود 60 درصد از وسعت حوضه دارای تنوع زمینی کم (شامل نواحی دشتی و با ارتفاع کم)، 29 درصد از وسعت منطقه دارای تنوع متوسط و 11 درصد نیز دارای تنوع بالا با میانگین ارتفاع 2000 متر می‌باشد. با توجه به نتایج تحقیق سازمان‌های مسئول از طریق هماهنگ‌سازی فعالیت‌ها و برنامه‌های خود با سطح تنوع ژئودایورسیتی می‌توانند در جهت ارتقای آن با انجام فعالیت‌های مکانیکی و بیولوژیکی مناسب گام‌های مهمی بردارند.

کلیدواژه‌ها


عنوان مقاله [English]

Geodiversity assessment of Dorungar river basin using modified Serrano and Ruiz-Flaño method

نویسندگان [English]

  • Malihe Batajrobe 1
  • Seyed Reza Hosseinzadeh 2
  • Neda Mohseni 2
  • Amir Lakzian 3
1 Department of Geography, Faculty of Literature and Humanities Dr. Ali Shariati, Ferdowsi University of Mashhad, Mashhad, Iran
2 Dep. of Geography, Faculty of Letters and Humanities, Ferdowsi University of Mashhad, Mashhad, Iran
3 Department of Soil Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Introduction

In spite of the excellent results achieved by international scientific community, the topic of quantitative evaluation of geodiversity is still an open issue. The complex geological and geomorphological environment, related to the diversity of topographic and climatic characteristics leads to the dynamics and evaluation of natural systems.

Geodiversity studies include key cognitive methodological issues such as those used for scientific observations (scale, ranking, sampling, measurement, and errors) in geomorphology.

Methods for assessing geodiversity are quantitative, qualitative and quantitative-qualitative. The study of geodiversity on a regional and local scale with traditional mapping techniques is often a difficult and costly process and statistical modeling, which is one of the quantitative methods, is used as a suitable approach in the analysis and mapping of geodiversity. The accuracy of output maps of geodiversity depends on the scale and accuracy of input data. The purpose of this study is to investigate the indicators of diversity in the Dorungar River basin.

Methodology

the Dorungar River basin With an area of 2456.18 Km2 is located in the central section of the Kopeh Dagh mountain ranges, northeastern Iran. The study area is located between 37° 11΄ to 37° 42΄ North latitudes, and between 58° 11΄ to 59° 27΄ East longitudes.

The methods applied in this study can be divided into two main types, namely(1) descriptive-analytical and (2) quantitative, which has been done using an ASTER GDEM with 30*30 meters resolution, geological maps of 1: 250000, Google Earth satellite imagery, land use maps, office studies and field observations. We used the modified index of Serrano and Ruiz-Fleno (2007) to assess the amount of geodiversity. In the first stage, based on the components in the formula, the land use index, geomorphology, and topographic layers were extracted. In the second step, the required maps were prepared and produced by ArcGIS software and compared with the images obtained during fieldwork.

Results and Discussion

Geomorphological evidence of the study area indicates the continuation of neotectonic activities during the Plio-Quaternary period. in other words the study area is been located in an active tectonic zone which is resulted in an abundance of structural landforms. In addition, tectonic deformations and structural landforms control drainage patterns and channel bed streams. Therefore, this paper aims to investigate the geodiversity of the study area to lead to better planning for environmental protection. Our results found that 60% of the study area has low, 29 % moderate, and 11% high geodiversity, respectively.

The results of previous studies have shown that the index of geodiversity is consistent with mountainous areas and this index is a function of the number of non-living elements and is directly related to roughness. The study area can be considered high geodiversity due to its mountainous nature and high number of geomorphological features.

Conclusion

Geodiversity assessment is a new attempt to achieve quantitively and qualitative components of the physical environment to compare their frequency and variability in the landscape phenomenon. the study of Quantitative geodiversity enhances the understanding of diversity in each unit and provides it possible to identify the role of different variables and their importance. In addition, geodiversity has economic, practical, educational, and aesthetic value and unique archival diversity of climatic and environmental conditions. The results showed that in the geomorphological map, low areas have less energy and this causes the role of any morphogenic factors to be minimized and Get the lowest score for diversity. In fact, These regions are regions with low gene diversity (homogeneity) and in other words, uniformity in geomorphic genes or processes, these systems are very vulnerable to environmental changes. The high diversity was related to mountainous areas with high sensitivity and low elasticity, and in this area, the heterogeneous system had high and complex gene diversity In areas with high land use scores, the impact on natural areas with unprincipled exploitation is low and land degradation is less. In areas with low land use scores, human impacts were maximal due to the disappearance of geomorphic forms and landforms and there was the most land use degradation.

In the geological map, class I, which includes igneous and metamorphic rocks, has the lowest score related to geodiversity. The class with moderate diversity is related to sedimentary rocks. Class III includes calcareous and dolomitic formations and due to the high sensitivity of this type of rocks to dissolution, their importance in the characteristics of roughness and the formation of special shapes has the highest diversity points.

Therefore, with the study of lithology units and geomorphology landscapes, we can focus more on issues related to sustainability and environmental protection, especially in the study area because of having three protected national parks in Iran. Quantitative geodiversity study is a new method that leads us to understand the structure of terrestrial phenomena, their distribution, and the relationship of these phenomena with the landscape of the region.

According to previous researchches, it can be said that considering the above indicators will give acceptable results about the preparation of diversity maps.

Keywords: Geodiversity, Dorungar river basin, Geoheritage, Environmental conservation.

کلیدواژه‌ها [English]

  • Geodiversity
  • Darungar river basin
  • Geoheritage
  • Environmental conservation
باتجربه، م.، سپهر، ع. و حسین زاده، ر.، 1396. تهیه نقشه تنوع زمینی شهرستان مشهد بر پایه اختلاف حساسیت پذیری لندفرم‌ها، پژوهش‌های ژئومورفولوژی کمّی، سال ششم، پاییز 1396، شماره 2، صص 115-99.
زمردیان، م. ج.، 1393. ژئومورفولوژی ایران (فرایندهای اقلیمی و دینامیک‌های بیرونی)، چاپ پنجم، انتشارات دانشگاه فردوسی مشهد
حریریان، م.، 1369.کلیات ژئوموروفولوژی، دانشگاه آزاد اسلامی.
حسین زاده، ر.، 1397. مبانی سیستم‌های اطلاعات جغرافیایی ((GIS، چاپ اول، انتشارات دانشگاه فردوسی، مشهد.
مختاری، ل. و بیرامعلی، ف.، 1396. محاسبه ‌و ‌تحلیل تنوع زمینی (تنوع زمینی، مطالعه موردی: شهرستان اشتهارد)، پژوهش‌های جغرافیایی طبیعی، دوره 55 ، شماره‌2، صص 322-307.
مختاری، ل.، نگهبان، س. و شفیعی، ن.، 1397. تحلیل مقایسه‌ای تنوع زمینی (تنوع زمین شناختی) در حوضه‌های شمال غربی استان فارس، پژوهش‌های ژئومورفولوژی کمّی، سال هفتم، شماره 3 صص 163-151.
مقصودی، م.، مقیمی، الف.، یمانی، م.، رضایی، ن. و مرادی، الف.، 1398. بررسی ژئومورفودایورسیتی آتشفشان دماوند و پیرامون آن براساس شاخص GMI. پژوهش‌های مورفولوژی کمی، سال 8، شماره 1، صص 69-52.
محمودی، ف.، 1385، ژئومورفولوژی ساختمانی، انتشارات دانشگاه پیام نور تهران.
یزدی، عبدالله رحیم، دبیری، ،1394. درآمدی بر ژئودایورسیتی به عنوان پایه­ای برای ژئوتوریسم، یافته­های نون زمینشناسی کاربردی، سال ششم، شماره 18، صص 83-74.
Betard, F. and Peulvast, J. P., 2019. Geodiversity hotspots: Concept, method and cartographic application for geoconservation purposes at a regional scale. Environmental management, 63(6), pp. 822-834.
Brilha, J., Gray, M., Pereira, D. I. and Pereira, P., 2018. Geodiversity: An integrative review as a contribution to the sustainable management of the whole of nature. Environmental Science & Policy, 86, 19-28.
Church, M., 2011. Observations and experiments. In: Gregory, K.J., Goudie, A.S. (Eds.), the SAGE Handbook of Geomorphology. SAGE, London, pp. 121-141.
Crisp, J. R., Ellison, J. C. and Fischer, A., 2021. Current trends and future directions in quantitative geodiversity assessment. Progress in Physical Geography: Earth and Environment, 45(4), 514-540.
de Paula Silva, J., Rodrigues, C. and Pereira, D. I., 2015. Mapping and analysis of geodiversity indices in the Xingu River basin, Amazonia, Brazil. Geoheritage, 7(4), 337-350.
Forte, J. P., Brilha, J., Pereira, D. I. and Nolasco, M., 2018. Kernel density applied to the quantitative assessment of geodiversity. Geoheritage, 10(2), 205-217.
Korf, E.D., 2020. Ocenka geoturisticheskoj znachimos­ti elementov georaznoobrazija na primere bassejna Verhnej Chui. 23.
Ioannis, M. T., Ioannis, K. K. and Pavlides, S., 2006. Tectonic geomorphology of the easternmost extension of the Gulf Corinth (Boeotia central Greece). Tectonophysics, 453 (1-4), pp. 211-232.
González Trueba, J.J., 2007. El Macizo Central de los Picos de Europa: geomorfología y sus implica­ciones geoecológicas en la alta montaña cantábrica. PhD Thesis, Universidad de Cantabria.
Gray, M., 2004. Geodiversity: Valuing and Conserving Abiotic Nature, John Wiley, Chichester, pp 434.
Gray, M., 2008. Geodiversity: the origin and evolution of a paradigm. In: Burek, C.D., Prosser, C.D. (Eds.), the History of Geoconservation. Special Publication 300. The Geological Society, London, pp. 3136.
Gray, M., Gordon, J. E. and Brown, E. J., 2013. Geodiversity and the ecosystem approach: the contribution of geoscience in delivering integrated environmental management. Proceedings of the Geologists' Association, 124 (4), 659- 673.
Gray, M., 2018. Geodiversity: the backbone of geoher­itage and geoconservation. In: Geoheritage. Elsevi­er.
Hani, A. F. M., Sathyamoorthy, D. and Asirvadam, V. S., 2011. A method for computation of surface roughness of digital elevation model terrains via multiscale analysis. Computers & Geosciences, 37 (2), pp. 177–192.
Jenness, J. S., 2004. Calculating landscape surface area from digital elevation models. Wildlife Society Bullettin, 32(3), pp. 829-839.
 
Kubalíková, L., Bajer, A. and Balková, M., 2021. Brief notes on geodiversity and geoheritage perception by the lay public. Geosciences, 11(2), pp. 54-62.
Lucchesi, S. and Giardino, M., 2012. The role of geoscientists in human progress. Annals of Geophysics, 55 (3), pp. 355-359.
Melelli, L., Vergari, F., Liucci, L. and Del Monte, M., 2017. Geomorphodiversity index: Quantifying the diversity of landforms and physical landscape. Science of the Total Environment, 584(1), pp. 701-714.
Melelli., L., 2014. Geodiversity: A New Quantitative Index For Natural Protected Areas ENHANCEMENT. GeoJournal of Tourism and Geosites 1(13), pp. 2-12.
Najwer, A., Borysiak, J., Gudowicz, J., Mazurek, M. and Zwoli´nski, Z., 2016. Geodiversity and biodiversity of the postglacial landscape (De˛bnica river catchment, Poland). Quaestiones Geographicae, 35 (1), pp. 5_28.
Panizza, M., 2009. The geomorphodiversity of the Dolomites (Italy): A key of geoheritage assessment. Geoheritage, 1(5), pp. 33-42.
Pellitero, R., Manosso, F. C. and Serrano, E., 2014. Mid- and large-scale geodiversity calculation in Fuentes Carrionas (NW Spain) and Serra do Cadeado (Paraná, Brazil): methodology and application for land management. Geografiska Annaler: Series A, Physical Geography,
Pellitero, R., Manosso, F. C. and Serrano, E., 2015. Mid- and large-scale geodiversity calculation in Fuentes Carrionas (NW Spain) and Serra do Cadeado (Parana, Brazil): methodology and application for land management. Annals of Geophysics, 97 (2), 219–235.
Pereira, D. I., Pereira, P., Brilha, J. and Santos, L., 2013. Geodiversity assessment of Paraná State (Brazil): an innovative approach. Environmental management, 52(3), pp. 541-552.
Pérez-Umaña, D., Quesada-Román, A. and Tefogoum, G. Z., 2020. Geomorphological heritage inventory of Irazú volcano, Costa Rica. International Journal of Geoheritage and Parks, 8(1), 31-47.
Quesada-Román, A. and Pérez-Umaña, D., 2020. Tropical paleoglacial geoheritage inventory for geotourism management of Chirripó National Park, Costa Rica. Geoheritage, 12(3), 1-13.
Ruban, D. A., 2010. Quantification of geodiversity and its loss. Proceedings of the Geologists' Association, 121(3), 326–333
Serrano, E. and Ruiz-Flaño, P., 2007. Geodiversity: a theoretical and applied concept. Geographica Helvetica no. 62(3), pp. 140–147.
Silva, J. P., Pereira, D. I., Aguiar, A. M. and Rodrigues, C., 2013. Geodiversity assessment of the Xingu drainage basin. Journal of Maps, 9(2), pp. 254–262.
Stepišnik, U. and Trenchovska, A., 2018. A new quantitative model for comprehensive geodiversity evaluation: the Škocjan Caves Regional Park, Slovenia. Geoheritage , 10(1), pp. 39–48.
Thomas, M. F., 2012. Geodiversity and landscape sensitivity: a geomorphological perspective. Scott. Geography Journal, 128(3-4), 195–210.
Zwoliński, Z., Najwer., A. and Giardino, M., 2018. Methods for assessing geodiversity. In: Reynard E, Brilha J (eds) Geoheritage: assessment, protection, and management. Elsevier Inc., Amsterdam, pp. 27–52.
Zwoliński, Z. and Stachowiak, J., 2012. Geodiversity map of the Tatra National Park for geotourism. Quaetio­nes Geographicae. 31:99–107.