بررسی تغییرات الگوی شریانی رودخانه جاجرود بر اساس شاخص های شریانی بریس، ریچاردز و واربوردن (حدفاصل سد لتیان تا سد ماملو)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران شهید بهشتی، تهران.

2 کارشناسی ارشد ژئومورفولوژی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران.

10.22034/gmpj.2023.367566.1385

چکیده

بررسی الگوی رودخانه‌ها برای درک شرایط کنونی و پتانسیل تغییرات احتمالی آن‌ ضروری است. ژئومورفولوژیست ها از شکل کانال به‌عنوان یک پارامتر مهم در طبقه‌بندی، آنالیز و پیش‌بینی پاسخ‌های رودخانه‌ای استفاده کرده‌اند. یکی از ابزارهای رفع این مشکلات طبقه بندی رودخانه ها است. منطقه مورد مطالعه بخشی از رودخانه جاجرود در شرق تهران به طول 19 کیلومتر (17 بازه) بین دو سد لتیان و ماملو انتخاب گردید. در این مطالعه از تصاویر ماهواره‌ای (سال‌های 1383 و 1397) ، عکس های هوایی (سالهای 1334 ، 1350 و1372) و بازدیدهای میدانی استفاده گردید. برای بررسی الگو شریانی از شاخص‌های بریس، ریچاردز و واربوردن استفاده شد. به منظور بررسی تاثیر سد جاجرود بر الگوی شریانی رودخانه جاجرود از آزمون ویلکاکسون و بررسی تفاوت الگوی شریانی در بازه های مختلف از آزمون t جفتی استفاده شد. بر اساس مقادیر میانگین شاخص شریانی رودخانه جاجرود، از سال 1334 تا 1372 مقادیر شاخص شریانی کاهشی و بعد از آن تا سال 1397 افزایشی بوده است. بررسی تاثیر سد جاجرود بر الگوی شریانی نشان داد که مقادیر شاخص شریانی بریس و ریچاردز قبل از احداث سد با مقادیر آنها بعد از احداث سد اختلاف معناداری وجود دارد. بر اساس نتایج آزمون t جفتی در شاخص بریس و ریچاردز، مقادیر شاخص شریانی در بازه های مورد مطالعه از سال 1350 به بعد در مقاطع زمانی مختلف دارای اختلاف معناداری بوده است. بر اساس یافته های این مطالعه، مدل بریس و ریچاردز کارایی بیشتری نسبت به مدل واربوردن جهت مطالعه الگوی شریانی در منطقه مورد مطالعه داشته است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating changes in the braided pattern of the Jajroud River based on Brice, Richards and Warburton braiding indices (between Latian Dam and Mamlo Dam)

نویسندگان [English]

  • mohamadmehdi hoseinzadeh 1
  • Ali Golestani 2
1 faculty of earth sciences, shahid bahashti university
2 Earth Sciences Faculty, Shahid Beheshti University, Tehran
چکیده [English]

Introduction

The assessment of river patterns is necessary in order to understand current conditions and the potential of their possible changes in the future. Geographers, Geomorphologists, and geologists have used channel shape as an effective parameter in classifying, analyzing, and predicting fluvial responses. In recent years, the changes in river systems have led to increased environmental damage caused by river processes in many countries, therefore managers have had to pay more attention and be more sensitive and change as an integral part of all river systems. River classification is one of the most effective tools for solving these problems. Brierley and Fryirs (2005) categorized the channel pattern based on three interrelated characteristics, including the number of channels, sinuosity, and lateral stability, into five types, straight, sinusoidal, Meandering, braided, and anastomosing. For this purpose, changes in the braided pattern in Jajrud river have been studied.



Methodology

The studied area is located on the east bank of the Jajrood river, which is 19Km long (17 reaches) and located between the Latian and Mamlu dams. The Jajrood River originates from the heights of Alborz (Klon Bestak) and its most significant branches are the Fasham, Damavand, Migun, and Ahar rivers. Mamlu basin covers 1772.82 square kilometers, including Latian dam basin (701.19 square kilometers). The study area is located on the main channel of the Jajrood river, where the Latian and Mamlu dams were constructed.

Throughout this study, satellite images (years 2006 and 2019), aerial photographs (years 1957, 1973, and 1995), and fieldwork have been used as the main research methods. In order to conduct the fieldwork, the study area has been divided into 17 study subcategories, each subcategory being 200 meters long. Brace, Richards, and Warburden indexes were used to check the degree of braided pattern development. which are, respectively, the first index of the parameters of the length of barriers and islands (a) and the length of the study reaches (L), the second index of the parameter of the length of the sub-channels (l) and the length of the study reaches (L), the third index of the parameter of the active channel width ratio (b) the width of the channel (B) in the studied section. According to Richard’s and Brace’s Indices, the higher the output number, the more braided the river is. Brace and Richard indices are the reaches of investigation and the results of these two include the calculation reach. The Warburden index, however, is based on the ratio of the width of the branched channels to the width of the main channel which approaches Issue number one as branching increase.

Richards and Warburton indices were used to check of braided pattern. For estimating the effect of dam on the braided pattern of Jajrud River, the Wilcoxon test was used and the paired t-test was used to check the difference in the braided pattern in different reaches.



Results and discussion

The results based on the studies, conducted in 17 reaches of 19 km of Jajrud river for 5 time periods, show that these reaches did not have the same conditions in terms of the braided index.

These changes in the river pattern may indicate changes in environmental conditions along the river or the effect of the built dam on the river regime. The results of the study show that among the areas near the Latian dam, areas No. 1 and 2 have always had a single-channel state except in 1973 when it was low braided.

The most important reason for the single-channel pattern in the first and second reaches is the location of the channel, which is limited inside the valley. For the year 1957, when the river regime is completely normal, except in reaches 1 and 2, all reaches have an braided pattern. The trend has been almost constant. This trend in 1973, when the Latian dam is in use, in all indicators for reaches 3, 4, and 5, the braided coefficient is zero or low values. The explanation of the above conditions can be the water extraction and launching of the Latian Dam in the same period of time and the limited output of water, which has finally led to the single-channelization of the mentioned sections of the river. In 1995, the values of the braided coefficient with all three methods in the studied reaches show the lowest value of the braided coefficient compared to the previous and subsequent years. Based on the discharge data of the available hydrometric stations, the high discharge values at this point in time compared to other times were the most important reason for the reduction of the sediment load of the bed and the reduction of the braided pattern index. In 2006, the average braided index increased compared to 1995. This year, the highest braided index has been created in the last reaches of 13 to 16. The most important reason for this issue would be the construction of the Mamlu Dam at a short distance.



Conclusion

Based on the average values of the braiding index in the Jajrood river, from 1957 to 1995, the values of the braiding index decreased and then increased until 2019. Assessment of the impact of the Jajrood dam on the braided pattern indicates the significant difference between the Brice and Richards indices values before and after the dam construction. Based on the results of the paired t-test in the Brace and Richards indices, the values of the braiding index in the studied reaches from 1973 onwards have significant differences in several periods. According to the findings, the Brace and Richards indices have been more effective rather than the Warburton index to study the braided pattern in this study area.

کلیدواژه‌ها [English]

  • Braiding index "
  • braided channel pattern "
  • Jajroud River "
  • "
  • Latian Dam "
اسماعیلی، ر.،  حسین‌زاده، م. م. و متولی، ص.، 1390،   تکنیک های میدانی در ژئومورفولوژی رودخانه ای، انتشارات لاهوت، تهران.
اسماعیلی، ر. و دلیری، ر.، 1398، تحلیل مورفولوژیکی و مورفودینامیکی پیچان‌رودهای رودخانه شلمان رود، استان گیلان. پژوهش‌های دانش زمین، سال دهم، شماره 39، صص. 141 – 153.
رومند، س. و انصاری فر، م.، 1394، بررسی ژئوموفولوژی مهندسی رودخانه جاجرود (از سد لتیان تا جاجرود)، اولین کنفرانس بین المللی علوم جغرافیایی، آباده.
چورلی، ر.ج.، شوم، ا. ا و سودن، د.ا.، 1392، ژئومورفولوژی جلد سوم (فرایند های دامنه ای، آبراهه ای، ساحلی و بادی)، ترجمه احمد معتمد، انتشارات سمت، تهران.
حسین‌زاده، م. م. و اسماعیلی، ر.، 1394. ژئومورفولوژی رودخانه‌ای، مفاهیم، فرم‌ها و فرایندها. چاپ اول، تهران،  انتشارات دانشگاه شهید بهشتی، تهران.
شکیبا، پ. و غواصیه، ا. ر.، 1390، بررسی مورفولوژی رودخانه های شریانی مطالعه موردی رودخانه جاجرود (پایین دست سد لتیان، اولین کنفرانس بین المللی و سومین کنفرانس ملی سد و نیروگاههای برق آبی، تهران.
کارد، آ.ج.، 1397، ریخت شناسی رودخانه، ترجمه محسن نصر آبادی - مسعود سعیدی -  ناصر رفیقی اسکویی، چاپ پارسیا، تهران.
گلستانی، ع. و انصاری، ر.، 1397، بررسی مولفه هندسی پیچان رودها و میزان توسعه آن ها در استان بوشهر، یازدهمین سمینار بین المللی مهندسی رودخانه، اهواز.
رضایی مقدم، م.حجباری، ا. و پیروزی نژاد،  ن.، 1395،  بررسی الگوهای رودخانه ای مئاندری، شریانی و آنابرنچینگ با استفاده از شاخص های شریانی و خمیدگی در رودخانه گاماسیاب، پژوهشنامه مدیریت حوزه آبخیز ، دوره:7 ، شماره:13 ، صص. 272-283
یمانی، م. و حسین‌زاده، م. م.، 1383، بررسی الگوی پیچان‌رودی رودخانه تالار با استفاده از شاخص‌های ضریب خمیدگی و زاویه مرکزی، تحقیقات جغرافیایی،  دوره 19، شماره 2 (پیاپی 73)، صص. 144 – 154 .
یمانی، م.، رحیمی، م. ویسی، ع.، 1397، مورفومتری و مقایسه تغییرات عرضی رودخانه ارس طی سه دهه اخیر مطالعه موردی : پایین‌دست سد میل مغان، پژوهشهای ژئومورفولوژی کمی، سال 3 شماره 4، صص 74-89.
Beechie, T. J., Liermann, M., Pollock, M.M., Baker, S. and Davies, J., 2006,  Channel pattern and river-floodplain dynamics in forested mountain river systems. Geomorphology, 78, pp. 124-141.
Brierly, G.J and Fryirs, K. A., 2005, Geomorphology and River Management Application of the River Style. UK: Blackwell Publishing, London.
Brice, JC., 1964, Channel patterns and terraces of the Loup Rivers in Nebraska. Geological Survey Professional Paper 422-D.
Buffington, J. M. and   Montgomery, D. R., 2013, Geomorphic classification of rivers. Treatise on Geomorphology; Fluvial Geomorphology, San Diego, CA: Academic Press.
Byrne, C. F., Pasternack, G. B., Guillon, H., and Lane, B. A., 2020, Sandoval-Solis S. Reach-scale bankfull channel types can exist independently of catchment hydrology. Earth Surface Processes and Landforms, 45, pp. 2179-2200.
Chalov, S.R. and Alexeevsky, N. I., 2015, Braided rivers: structure, types and hydrological effects. Hydrology Research, 46 (2), pp. 258–275.
Chang, H. H., 2008, River morphology and river channel changes. Trans. Tianjin Univ, 14, pp. 254–262.
Ching-Ruey, L., 2021, Hydrodynamics of braiding river.  International Journal of Hydrology, 5 (3), pp. 87-91
Dunne, K. B. J. and Jerolmack, D. J., 2020, What sets river width. SCIENCE ADVANCES, 16, pp. 1-9.
Egozi, R. and Ashmore, P., 2008, Defining and measuring braiding intensity. Earth Surface Processes and Landforms, 33, pp. 2121 – 2138.
Friend, PF. And Sinha, R., 1993, Braiding and meandering parameters. In Braided Rivers, Best JL, Bristow CS (eds). The Geological Society London, pp 105–112.
Germanoski, D. and Schumm, SA., 1993, Changes in braided river morphology resulting from aggradation and degradation. Journal of Geology, 101, pp. 451–466.
Ham, D.G., 2005, Morphodynamics and sediment transport in a wandering gravel-bed channel: Fraser River, British Columbia. The University of British Columbia. PhD thesis.
Hong, LB. and Davies, TRH., 1979, A study of stream braiding. Geological Society of America Bulletin, 90(2), pp. 1839 –1859.
Howard, AD., Keetch, ME. And Vincent, CL., 1970, Topological and geometrical properties of braided streams. Water Resources Research, 6, pp. 1674–1688.
Kessler, A. C., Gupta, S. C., Dolliver, H. A. S. and Thoma, D. P., 2012, Lidar Quantifi cation of Bank Erosion in Blue Earth County, Minnesota. Journal of Environmental Quality, 41, pp. 197-207.
Mosley, PM., 1981, Semi-determinate hydraulic geometry of river channels, South Island, New Zealand, Earth surface Processe and Landforms, 6, pp. 127–137.
Nanson, GC. and Huang, HQ., 2016. A philosophy of rivers: Equilibrium states, channel evolution, teleomatic change and least action principle. Geomorphology, 302, pp. 3-19.
Pannone, M. and Vincenzo, D.A., 2021, Theoretical Investigation of Equilibrium Dynamics in Braided Gravel Beds for the Preservation of a Sustainable Fluvial Environment. Sustainability, 13(3), pp. 12- 46.
Prasujya, G. and Sharma, N., 2021, Spatio-temporal study of morpho-dynamics of the Brahmaputra River along its Majuli Island reach, Environmental Challenges, https://doi.org/10.1016/j.envc.2021.100217
Sarma, J.N. and Acharjee, S., 2018, A Study on Variation in Channel Width and Braiding Intensity of the Brahmaputra River in Assam, India. Geosciences, 8(9), pp. 343-361.
Simone, B., Hervé, P., Schmitt, R., Pitlick, J., Piegay, H. and Castelletti, A., 2021, Sediment transport at the network scale and its link to channel morphology in the braided Vjosa River system. Earth Surface Processes and Landforms, 5, pp. 1-43.
Richards, KS., 1982, Rivers: Form and Processes in Alluvial Channels. Methuen, 358 pp.
Rust, BR., 1978, A classification of alluvial channel systems. In Fluvial Sedimentology, Miall AD (ed.). Canadian Society of Petroleum Geologist: Alberta; 187–198.
Warburton, J. and Davies, TRH., 1994, Variability of bedload transport and channel morphology in braided river hydraulic model. Earth Surface Processes and Landforms, 19, pp. 403–421.
Winterbottom, S. J., 2000, Medium and short-term channel planform changes on the Rivers Tay and Tummel, Scotland. Geomorphology, 34, pp 195-208.
You, Y., Li, Z., Gao, P. and Hu, T., 2021, Impacts of dams and land-use changes on hydromorphology of braided channels in the Lhasa River of the Qinghai-Tibet Plateau, China. International Journal of Sediment Research, 37, pp. 214-228.