بررسی شواهد رسوبی نوسانات سطح آب دریاچه ارومیه در کواترنری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه شهید بهشتی

2 دانشگاه تهران

3 سازمان زمین شناسی کشور

4 دانشگاه ETH زوریخ

چکیده

پادگانه‌های دریاچه‌ای و خطوط ساحلی قدیمی دریاچه ارومیه یکی از مهم‌ترین شواهد ژئومورفولوژیکی دریاچه ارومیه هستند که بررسی آن‌ها ازلحاظ پراکندگی و تغییرات ارتفاعی و همچنین ماهیت رسوب‌شناختی آن‌ها می‌تواند اطلاعات بسیار ارزشمندی را در رابطه با نوسانات دیرینه سطح آب دریاچه ارومیه و همچنین شرایط محیطی و تغییرات آن در زمان رسوب‌گذاری در اختیار محققین علوم زمین در اختیار قرار دهد.این تحقیق باهدف مطالعه پادگانه‌ها و خطوط ساحلی قدیمی دریاچه ارومیه  از دیدگاه رسوب‌شناسی با بررسی دانه‌بندی با استفاده از الک شیکر مرطوب و تجزیه‌وتحلیل آن‌ها در نرم‌افزار گردیستات و همچنین بررسی آنالیز عنصری و ژئوشیمی رسوبی رسوبات پادگانه‌های دریاچه‌ای از طریق انجام آزمایش‌های ICP < /span> و XRF  و بررسی تغییرات آن‌ها هم‌زمان با نوسانات سطح آب دریاچه ارومیه انجام گرفت. نتایج مطالعات دانه‌بندی رسوبات نشان می‌دهد،  همزمان با بالا آمدن سطح آب دریاچه ،رسوبات ریزدانه در حد سیلت و رس در  پادگانه‌های دریاچه‌ای نهشته شده است و با پسروی سطح آب دریاچه دانه‌بندی رسوبات به ماسه و گراول تغییریافته است. با بالا آمدن سطح آب دریاچه و همزمان شکل‌گیری پادگانه‌های دریاچه‌ای ارومیه، مقدار CaO افزایش‌یافته که علت آن را می‌توان با بالا رفتن مقدار کربنات کلسیم  رسوبات شیمیایی و بیوشیمیایی ازجمله پوسته‌های صدف موجود در پادگانه‌های دریاچه‌ای در ارتباط دانست. عناصر اصلی سیلیس (SiO2)،  آلومینیم (Al2O3)،  اکسید منیزیم (MgO)، اکسید آهن ((Fe2O3، تیتان (TiO2)،  اکسید پتاسیم (K2O)، اکسید سدیم (Na2O) و اکسید سولفور (SO3)  همزمان با افزایش سطح آب دریاچه کاهش می‌یابد که نشان‌دهنده تأثیر کمتر رسوبات حمل شده با منشأ خشکی در پادگانه‌های دریاچه‌ای بوده است و در زمان پس‌روی آب دریاچه این عناصر روندی معکوس را نشان می‌دهند. در این میان محتوی بیولوژیک نقش بسیار زیادی در تغییرات بافت رسوبات و همچنین تغییر در مقدار  عناصر رسوبی همزمان با بالا آمدن سطح آب دریاچه را در  رسوبات پادگانه‌های دریاچه‌ای ارومیه نشان می‌دهند. 

کلیدواژه‌ها


عنوان مقاله [English]

Effect of The Urmia Lake level fluctuations Based on lake terraces sediments characteristics

نویسندگان [English]

  • alireza salehipoor milani 1
  • mojtaba yamani 2
  • ebrahim moghimi 2
  • raziyeh lak 3
  • mansour jafarbigloo 2
  • ali mohamadi 4
1 shahid beheshti university
2 university of tehran
3 geological survey of iran
4 Zürich university
چکیده [English]

Marine and lake terraces are one of evidence for Climate Geomorphology investigationsEspecially in Quaternary. These Terraces are important not only for climatic aspects but also they can show a lot of truth about earth and environment evolutions History, Archeology and Human History. Marine and Lake Terraces are located in different elevations and these changes can present paleo water lake level fluctuations. Urmia Lake is a hyper-saline lake in northwestern Iran near Iran’s border with Turkey. The lake is between the Iranian provinces of East Azerbaijan and West Azerbaijan. It is the largest lake in the Middle East and the third largest saline lake on earth. Urmia Lake a Terraces are one the most important geomorphic evidences of this lake and show paleo lake level fluctuations of this lake in Quaternary. Investigation of these lake terraces from view of sedimentological and paleo lake level fluctuation This research was done with focus on identification relation between Urmia Lake level fluctuation and their effects on sedimentological characteristics of Lake terraces.
Materials and Methods
In this research Quaternary sediment boundaries in coastal plain and paleo Lake Coastline were mapped on satellite Images using GIS and Rs for study area. In field work, Paleo lake terraces identified and recorded.   Lake terraces sampling were done according to granolometry, color and specially microfossils of sediments in field work. The elevations of terraces were measured with a Differential Global Positioning system (DGPS). Granolometry of the sediments were analyzed and Percentage of Clay, Sand and Gravel were determined in sedimentology lab of Geological survey of Iran using Vibratory Sieve Shaker. Percentage of Silt and Clay Determined Laser Particle Sizer. Granolometry data analyzed in Gradistat 4 software and the curves were plotted. Geochemichal Investigation was done Using ICP and XRD analysis to determination Chemical Elements of sediments. Granolometry and Geochemical Information Stratigraphy Plotted using Logplot Soft ware.
Discussion
According to the results of granolometry studies Represent 45/6 Percent of lake sediments are located in range of mud, 42/6sand and 11.8 gravel. 90/8 percentage of sediments particles included in Mud and sand. The most frequent of sediment types are Slightly Gravely Sandy Mud and Slightly Gravely Muddy Sand.  Geochemical data shows when water lake level rose, sediment environmental changed from terrestrial sediments to lake environments and at this time rate of geochemical elements change.    Percentage of CaO elements increase during water level rise and decrease when water lake level down. Magnesium calcite is high in almost all lake terraces sediments and Most of lake terraces sediment samples have Biotic Calcite. The study concluded that the increase of CaO can be very much dependent on biological content and increasing the amount of micro- fossils in Lake Terraces sediments.  
Conclusion                                                                                                                                               High volume mud in lake terraces sediments samples represent , lake terraces formed in a low-energy environments like as lake , wetland or local closed holes. Increase the amount of CaO in lake sediments terraces in most cases due to the increase in deposits of shells, including chemical and biochemical sediments that contain calcium carbonate, respectively. High magnesium carbonate deposits lake terraces in lake sediments can be very high due to the size and role in skeletal shells in the lake sediments. Probably Urmia lake many terraces, especially those who have very thick stratification (over 100 cm), as well as terraces Kachabashi, Naghadeh, and Qez Qaleh are formed in south part of Urmia Lake

کلیدواژه‌ها [English]

  • Lake Terrace
  • Paloe Lake Level. Urmia Lake
  • Quaternary
  • Sedimentology
  • آدابی، محمدحسین، 1383،ژئوشیمی رسوبی، آرین زمین.
  • آقا نباتی، علی، 1385، زمین‌شناسی ایران، سازمان زمین‌شناسی و اکتشاف معدنی کشور.
  • بربریان،مانوئل و قرشی،منوچهر،1366،پژوهش بر لرزۀ زمین‌ساخت کاربردی و خطر زمین‌لرزه، گسلش در دریاچة ارومیه و چگونگی زایش آن، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
  • شاه‌حسینی، مجید، امینی، عبدالحسین و شهرابی، مصطفی، 1382،مطالعه رسوب‌شناسی و محیط تشکیل نهشته‌های کربناته بیوژنیک جوان در اطراف دریاچه ارومیه و بررسی ارتباط آن‌ها با دریاچه، هفتمین همایش انجمن زمین‌شناسی ایران.
  • شهرابی،مصطفی، 1372، شرح زمین‌شناسی چهارگوش ارومیه، مقیاس1:250000 سازمان زمین­شناسی کشور.   
  • شهرابی، مصطفی ،۱۳۶۶، دریاچه‌شناسی و زمین‌شناسی مهندسی دریاچة ارومیه، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
  • شهرابی، مصطفی ،۱۳۷۳، دریاها و دریاچه‌های ایران، طرح تدوین کتاب زمین‌شناسی ایران.  
  •     صالحی پور میلانی، علیرضا،1390، بازسازی نوسانات سطح آب دریاچه ارومیه با استفاده از تصاویر ماهواره‌ای، سازمان زمین‌شناسی و اکتشافات معدنی کشور 
  • صالحی پور میلانی، علیرضا، یمانی، مجتبی، مقیمی، ابرهیم، لک، راضیه، جعفر بیگلو، منصور، 1394،بازسازی پالئوهیدرولوژی و پالئواکولوژی دریاچه ی ارومیه در کواترنری (بامطالعه‌ی پادگانه‌های دریاچه‌ای، هیدروژئومورفولوژی، 143-173
  • صبوری، جعفر، علیمحمدیان،حبیب، مغفوری مقدم و لک،راضیه،1389،مطالعة سنگواره‌ها، محیط رسوبی و تعیین سن مطلق پادگانه‌های دریاچه‌ای ارومیه، چهاردهمین همایش انجمن زمین‌شناسی ایران، ارومیه
  • طالبی راد، فرزین، 1377،ژئوشیمی و ترمودینامیک ژنز کانیهای تبخیری در محیط های دریایی و دریاچه‌ای با نظر ویژه به شورابه های دریاچه ارومیه، اداره کل منابع طبیعی آذربایجان شرقی
  • طلوعی،جواد،1375، مطالعه و بررسی ژئوشیمیایی و هیدروشیمیایی و شناخت فازهای رسوبات شیمیایی حوضه رسوبی تبخیری دریاچه ارومیه، رساله کارشناسی ارشد زمین‌شناسی، دانشگاه تهران مسیر بزرگراه شهید کلانتری، پایان‌نامه کارشناسی ارشد، دانشکده علوم، دانشگاه تهران.
  • فرزانه،احمد. 1373،  رسوب‌شناسی غرب دریاچه ارومیه، پایان‌نامه کارشناسی ارشد، دانشکده علوم، دانشگاه تربیت‌معلم
  • لک ،راضیه, درویشی خاتونی جواد, محمدی علی،1390، مطالعات پالئولیمنولوژی و علل کاهش ناگهانی تراز آب دریاچه ارومیه، زمین‌شناسی ژئوتکنیک (زمین‌شناسی کاربردی)، دوره  7 , شماره  4 ،343 تا 358
  • محمدی، علی، 1384، بررسی تاریخچه رسوب‌گذاری هولوسن،دریاچه ارومیه بر اساس مطالعه مغزه­های تهیه شده در مسیر بزرگراه شهید کلانتری، پایان‌نامه کارشناسی ارشد، دانشکده علوم، دانشگاه تهران.
  • موسوی حرمی،رحیم،1381، رسوب‌شناسی،انتشارات به نشر(آستان قدس رضوی)،چاپ هشتم.
  • مغفوری مقدم، 1371،  رسوب‌شناسی رسوبات پلیستوسن گسترۀ دریاچة ارومیه، پایان نامة کارشناسی ارشد، تهران، دانشگاه آزاد اسلامی واحد تهران شمال، دانشکدة علوم.
  • مهاجر باوقار، ن، غضبان، ف، 1376، ژئوشیمی و منشأ شوری آب دریاچه ارومیه، اولین همایش زمین‌شناسی دریایی، ایران، چابهار
  • ·         Adabi, M.hand Rao, C.P., 1991, petrography and geochemical evidence for original aragonitic mineralogy of upper Jurassic carbonate(Mozdoran formation) , Sarakhs area , Iran, Sedimentary Geology, V72,P 253-267.
  • Arz, Helge W., Pätzold, Jürgen., Wefer, Gerold,m., 1998, Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from last-glacial marine deposits off northeastern Brazil. Quaternary Research, 50(2),124-135
  • Bartov, Y., 1999,The Geology of the Lisan Formation at the Massada Plain and the Lisan Peninsula.” Unpublished M.Sc. thesis. The Hebrew University of Jerusalem [In Hebrew with an English abstract].
  • Chen, H.Y., Clark, A.H., and Kyser, T.K., 2011, Contrasted hydrothermal fluids in the Marcona-Mina Justa iron-oxide Cu (-Au-Ag) deposits, south-central Perú: Mineralium Deposita, v. 46, p. 677-706
  • Chen, H.Y., Clark, A.H., and Kyser, T.K., 2010, The Marcona magnetite deposit, Ica, Central-South Peru: A product of hydrous, iron oxide-rich melt: Economic Geology, v. 105, p. 1441-1456
  • Chen, H.Y., Cooke, D.R., and Baker, M.J., 2013, Mesozoic IOCG Mineralization in the Central Andes and the Gondwana Supercontinent Breakup: Economic Geology, v. 108, p. 37-44
  • Dymond, J., Suess, E. and Lyle, M., 1992, Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography 7, 163–181.
  • Folk Robert, 1974. A Review of Grain-size Parameters, Sedimentology, Vol 6, pp 73-93.
  • Goldberg, E. D., and G. Arrhenius., 1958, Chemistry of pelagic sediments, Geochim. Cosmochim. Acta, 13, 153– 212.
  • Johnson, ME., Libbey, LK., 1997, Global Review of Upper Pleistocene (Substage 5e) Rocky Shores: Tectonic Segregation, Substrate Variation, and Biological Diversity', Journal of Coastal Research, vol. 13, No. 2, pp. 297-307.
  • Klump, J., Hebbeln, D. and Wefer, G., 2000, the impact of sediment provenance on barium-based productivity estimates. Mar. Geol. 169, 259–271.
  • Kuzucuog Lu, Catrherina., Christol, Aurelien., Mouralis, Damase.,  Dog˘ u, Ali-Fuat, Akko¨ Pru., Ebru , Fort,Monique. , Brunstein, DANIEL., Zorer, Halil., Fontugne, Michel., Karabiyk lu, ,Mustafa.,Scallet, Stephane., Reyss, Jean-Louis and Guilou, Herve.,2010, Formation of the Upper Pleistocene terracesof Lake Van (Turkey), Journal Of Quaternary SSciences , 25(7) 1124–1131.
  • Machlus M., Enzel ,Y., Goldstein, S., Marco, S., Stein, M., 2000, Reconstructing low levels of Lake Lisan by correlating fan delta and lacustrine deposits. Quaternary International 73-74,pp 137–144.
  • Mackin, J. E., and Aller, R. C,. 1984, Diagenesis of dissolved aluminum organic-rich estuarine sediments. Geochim. Cosmochim. Acta 48, pp299–313.
  • Mackin, J. E., and Aller, R. C., 1984, Diagenesis of dissolved aluminum in organic-rich estuarine sediments. Geochim. Cosmochim. Acta 48, pp299–313.
  • Mangini, A., Eisenhauer, A. and Walter, P., 1990, Response of Manganese in the ocean to the climatic cycles in the Quaternary. Paleoceanography 5, pp811– 821.
  • Murray, R. W., and M. Leinen .,1996, scavenged excess Al and its relationship to bulk Ti in biogenic sediment from the central equatorial Pacific Ocean, Geochim. Cosmochim. Acta, 60, pp3869– 3878.
  • Nesbitt, H. W. and Markovics, G., 1997, Weathering of grandioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochim. Cosmochim. Acta 61(8), pp1653–1670.
  • Nesbitt, H. W. and Young, G. M. (1982) Early Proterozoic climatee and plate motions inferred from major element chemistry of lutites. Nature 299, pp715–717
  • Pirazzoli, P. A., 2005, Marine Terraces. in M. L. Scheartz, ed., pp. 632-633. Encyclopedia of Coastal Science. Springer, New York, New York.
  • Schramm, A., Stein, M., and Goldstein S. L. (2000). Calibration of 14C time scale to >40 ka by 234U-230Th dating of Lake Lisan sediments (last glacial Dead Sea). Earth and Planetary Science Letters 175,pp 27–40
  • Schweizer, g.,1975, Untersuchungen zur Physiogeographie von Ost-Untersuchungen zur Physiogeographie von Ost-anatolien und Nordwestiran. Geomorphologische, klima- und hydrogeographische Studien im Vansee- und Rezaiyehsee-Gebiet. Tübinger Geogr. Stud. 60, Tübin- gen
  • Veizer, J., 1983 , Chemical diagenesis of carbonates: theory and application of trace element technique. In Arthure, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J., and Land, L. S. (Eds.): Stable Isotopes in Sedimentary Geology, Tulsa, Okla: Soc. Econ. Paleontol. Mineral. Short Course, No.10, pp. 31-1 to 3-100.
  • Wei, G. J., Liu, Y., Li, X. H., Chen, M. H. and Wei, W. C.,2003, High-resolution elemental records from the South China Sea and their paleoproductivity implications. Paleoceanography.124-139
  • Yarincik, K.M., Murray, R.W. and Peterson, L.C.,2000, Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578,000 years: Results from Al/Ti and K/Al. Paleoceanography 15.