بررسی و پایش تغییرات خط ساحلی دریای عمان در منطقه جاسک

نویسندگان

1 دانشگاه شیراز

2 دانشگاه تهران

چکیده

پایش ویژگی­­های مختلف نواحی ­ساحلی یکی از عوامل اساسی در جهت استفاده­ی بهینه از این منابع طبیعی و مدیریت ­پایدار آنها می­باشد. هدف تحقیق پایش تغییرات ، شناخت و تعیین مناطق حساس به تغییرات خط­ساحلی و تحلیل این تغییرات برپایه ژئومورفولوژی می­باشد. برای این منظور ابتدا به کمک نقشه­ها و مدارک موجود منطقه مورد مطالعه شناسایی شده و سپس از طریق تصاویر ماهواره­ای با سنجنده­های TM , ETMو OLI در بازه زمانی سال­های 1986 تا 2014، تغییرات خط ساحلی با استفاده از روش­های مبتنی بر طبقه­بندی حداکثر احتمال، بررسی شده­اند. لازم به ذکر است میزان دقت کاپا و دقت کلی طبقه­بندی حداقل %94 و 97% به ترتیب می باشد. در ادامه با استفاده از تکنیک مقایسه پس از طبقه بندی به پایش تغییرات پرداخته شد. نتایج حاکی از این است که محدوده مورد مطالعه در طی 28 سال گذشته، دارای تغییرات چشمگیری به صورت پسروی و پیشروی خط ساحل بوده است. طوری­که در طول دوره اول (1986-1994) 9 کیلومترمربع کلاس خشکی به کلاس آب و 68 کیلومترمربع کلاس آب به خشکی تبدیل، در طول دوره دوم (1994-2001) 19 کیلومترمربع خشکی به آب و 17 کیلومترمربع آب به خشکی تبدیل و در دوره سوم (2001-2008) 43 کیلومترمربع کلاس خشکی به کلاس آب و 3 کیلومترمربع کلاس آب به خشکی تبدیل و در دوره آخر (2008-2014) 65 کیلومترمربع کلاس خشکی به کلاس آب و 30 کیلومترمربع کلاس آب به کلاس خشکی تبدیل شده است. در نهایت مناطق حساس به تغییرات در خط ساحلی تعیین، و با تهیه نقشه ژئومورفولوژی آن منطقه تحلیل شد.

کلیدواژه‌ها


عنوان مقاله [English]

Survey and Monitoring shoreline changes Oman Sea in Jask area

چکیده [English]

Aim of this article is investigation of changes of the shoreline using satellite images and interpreting these changes on the basis of geomorphology. To achieve this purpose, Landsat images of four periods (1994-1986, 1994-2001, 2001-2008, and 2008-2014) are investigated. Studies indicate huge changes of the territory. In the first period, 900 hectare of the land has changed to the water and 6800 hectare of the water has changed to the land. 1900 hectare of land has changed to the water and 1700 hectare of the water has changed to the land, during the second period.
Over the third period, 4300 hectare of the land changed to the water and 300 hectare of the water changed to the land. 6500 hectare of the land changed to the water and 300 hectare of the water changed to the land, during the last period. Finally, sensitive areas to shoreline change are determined. Providing the geomorphological map of the area, the changes were studied and it was understood that changes of the shoreline don't have any regular pattern. The irregularities happen in the swamp areas. In other word, in the swamp areas, shoreline experienced both regression and propagation.
Introduction
Shore systems are so active and changes over them happen so fast due to the interaction of the two dynamic systems. (Sea and the land) About 70 percent of the world's shores undergo permanent erosion and regression of the shoreline. Today, remote sensing data are of the most applicable sources of the information to investigate the shore landforms, tidal surfaces, shoreline changes, depth of the water and anything of the category. Lots of people have dedicated their investigation to these subjects among whom Makota et.al(2004), Chalabi et.al (2006), Li (2011), chenta mansilvan et.al (2013) may be named.  Aim of this article is investigation of the shoreline changes of the Jask area. To achieve this purpose, firstly proper timed satellite images were collected and changes of the shoreline were studied. Quantity measurements evaluated the displacement of the shoreline to the area of changes, direction of the changes and displacements of the shoreline of the area in a twenty eight years period. At the end, geomorphological map of the area was provided and the area was analyzed.
Methodology
This research has several steps which are name below:

Collecting the proper data for the research
Pre-processing of the images and the data
Processing of the data and applying the changes detecting algorithms
Post-processing the results
Evaluating the results of the different methods, indicating the changes and getting the different maps of the seasonal and periodic changes of the shoreline. Analyzing these changes on the basis of the geomorphological map of the interested area.

In the post-processing section, monitored comparison after classification method is used.   In this method, classification is done for each of the images individually.  Therefore, in this research, most probable algorithm is applied for the classification.  In this research, due to the aim of the research and data available, two classes including water and soil are used. Knowing these two classes for a long period, shoreline changes can be investigated and relation and correlations between the shoreline changes with the water and land coverage may be shown.
Results and Discussions
After classifying the images, investigating of the changes starts. With intersecting these images two by two, classification results are investigated. Tables, images and circular charts present the from-to information of the class changes of the land usage of the area from 1986 to 2014. Using these information one can investigate the relationships between the different class changes trend. To analyze the shoreline changes, images of the previous step having two classes of water and soil, and intersected two by two should be investigated periodically.  Charts of the figure 10 present the alternating the two classes of water and soil in a 28 years period. As it shows, changes do not have a regular pattern. However, it can be understood that in each period, larger area of the water has changed to the soil. In general, most of the changes were about the regression of the shoreline. In other words, changes of the classes in the third and fourth period were more than the other two periods.   Secondly, class changes of these two periods present more soil classes changed to the water. Lastly, the most sensitive and stable areas of shoreline changes were evaluated.
Conclusion
Aim of this article is investigation of changes of the shoreline using satellite images and interpreting these changes on the basis of geomorphology. Evaluation of the shoreline changes using image classification and running change detection, is better than other methods since this method presents the from-to information of the each classes in each period and changed of the classes to each other in detailed. (Area, pixel and changes percentage)
Analyzing the results of the classification method, it may be understood that to evaluate shoreline changes, classification of the satellite images can be a proper method to present the changes of the shoreline. Results indicated that due to the area's condition no exact trend of the shoreline change could be achieved.    Changes of the two first periods were about the propagation of the shoreline, however in the other two periods the changes were of the reversed form.  Also, it could be indicated that the swap areas were the sensitive areas to the shoreline changes and most of the irregularities of the changes were about these swaps.

کلیدواژه‌ها [English]

  • Remote Sensing
  • evaluation of the changes
  • Shoreline
  • Landsat Satellite
  • شایان، سیاوش؛ جنتی، مهدی، (1386)، شناسایی نوسانات مرز پیرامونی و ترسیم نقشه پراکنش مواد معلّق دریاچه ارومیه با استفاده از تصاویر ماهواره ای، مجله پژوهشهای جغرافیایی، شماره 62
  • علایی طالقانی ، محمود،  (1392). ژئومروفولوژی ایران­، نشر قومس
  • کورش نیا، علی، (1389)، پایش تغییرات خط ساحلی با استفاده از GIS  و RS، مجله بندر و دریا، شماره 17
  • نعیمی نظام آبادی، علی؛ ثروتی، محمدرضا؛ قهرودی، منیژه، (1389)، پایش تغییرات خط ساحلی و لندفرمهای ژئومورفولوژیکی منطقه عسلویه با استفاده از تکنیک سنجش از دور و سیستم اطلاعات جغرافیایی، مجله فضای جغرافیایی، سال دهم، شماره 30
  • هوک، ج. ام (1385)، ژئومورفولوژی در برنامه­ریزی محیطی، ترجمه محمد جعفر زمردیان، چاپ دوم، تهران، انتشارات سمت.
  • یمانی، مجتبی؛ رحیمی هرآبادی، سعید؛ گودرزی مهر، سعید، (1390)، بررسی تغییرات خط ساحلی شرق تنگه هرمز با استفاده از تکنیک­های سنجش از دور، پژوهش های فرسایش محیطی، شماره 4.
    • Alesheikh, A.A. Ghorbanali, A. Nouri, N. (20007). Coastline change detection using remote sensing. Environ. Sci. Tech., 4 (1): 61-66.
    • Arkema, K. K., Guannel, G., Verutes, G., Wood, S. A., Guerry, A., Ruckelshaus, M., et al. (2013). Coastal habitats shield people and property from sea-level rise and storms.
    • Bird, E.C.F, 1996, Beach Management (Coastal Morphology and Research), John Wiley and Sons Ltd, Chichester.
    • Bird, E.C.F. (1985). Coastline Changes: a Global Review, Wiley, Chicheste
    • Bolstand, P. V. and Lillesand, T. M. 1991. Rapid maximum likelihood classification. Photpgramm. Eng. Remote Sens. 57.
    • Chalabi, A., Mohd-Lokman, H., Mohd-Suffian, I., Karamali, K., Karthigeyan, V., & Masita, M. (2006, May). Monitoring shoreline change using IKONOS image and aerial photographs: a case study of Kuala Terengganu area, Malaysia. In ISPRS Commission VII Mid-term Symposium “Remote Sensing: From Pixels to Processes”, Enschede, the Netherlands (pp. 8-11).. 
    • Chen, L.C., Rau, J.Y., 1998. Detection of shoreline changes for tideland area using multitempral satellite images. Int. J. Remote Sensing 19 (17), 3383–3397.
    • Chong, A.K., 2004. A case study on the establishment of shoreline position. Survey Review 37 (293), 542–551.
    • El-Asmar, H.M., 2002. Short term coastal changes along Damietta-Port Said coast northeast of the Nile Delta, Egypt. Journal of Coastal Research 18 (3), 433–441.
    • Erener, A. Yakar, M. (2012). Monitoring Coastline Change Using Remote Sensing and GIS Technologies. International Conference on Earth Science and Remote Sensing. Lecture Notes in Information Technology, Vol.30.
    • Gens, R., 2010. Remote sensing of coastlines: detection, extraction and monitoring. Int. J. Remote Sens. 31 (7), 1819–1836.
    • Hennecke, W.G., 2004. GIS modelling of sea-level rise induced shoreline changes inside coastal re-entrants — two examples from southeastern Australia. Natural Hazards 31 (1), 253–276.
    • Huang, Haijun, Fan, Hui, 2004. Monitoring change of nearshore zone in the Huanghe (Yellow River) Delta since 1976. Oceanologia et Limnologia Sinica 35 (4), 306–314.
    • IPCC Climate Change, 2007, the Fourth Assessment Report, (AR4) of the United Nations Intergovernmental
    • Jiang, Yi., Li, Liang-fen, Hui, Kang, Xin-bao, Zhong, 2003. A remote sensing analysis of coastline change along the Bohai bay muddy coast in the past 130 years. Remote Sensing for Land & Resources 4, 54–59.
    • Jones, B. M., Arp, C. D., Jorgenson, M. T., Hinkel, K. M., Schmutz, J. A., & Flint, P. L. (2009). Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophysical Research Letters, 36.
    • Kirwan, M. L., & Megonigal, J. P. (2013). Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 504, 53–60.
    • Kroon, A. Davidson ,M.A. Aarninkhof ,S.G.J, Archetti ,R, Armaroli, C. Gonzalez, M. Medri, S. Osorio, A. Aagaard ,T., Holman, R.A., Spanhoff, R.,2007, Application of Remote sensing Video Systems to Coastline management problems. Coastal Engineering NO,54 ,pp,493–505.  
    • Kumar, L., Ghosh, M.K., 2012. Land cover change detection of Hatiya Island, Bangladesh, using remote sensing techniques. J. Appl. Remote Sens. 6 (1), 063608.
    • Li Cui,B Xiao-Yan L. , 2011, Coastline Change of the Yellow River Estuary and its Response to the Sediment and Runoff (1976–2005), Geomorphology No127 , PP, 32–40.                                        
    • Li X, Michiel C.J. Damen. (2010). Coastline change detection with satellite remote sensing for environmental management of the Pearl River Estuary, China. Journal of Marine Systems. 82: 554-561.
    • Li, A., Li, G., Cao, L., Zhang, Q., Deng, S., 2004. The coast erosion and evolution of the abandoned lobe of the Yellow River Delta. Acta Geographica Sinica 59 (5), 731–737.
    • Li, W. Gong, P. (2016). Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of Landsat imagery. Remote Sensing of Environment. 179: 196-209.
    • Makota, V. et al., 2004, Monitoring shoreline change using remote sensing and GIS: a case study of   Kunduchi area, Tansania, western Indian ocean J.Mar. sci. vol. 3, No. 1, pp. 1-10.
    • Naji, T.A.H., Tawfeeq, R.J., 2011. Detection of shoreline change in AL-Thirthar Lake using remotely sensed imagery and topography map. IBN AL-HAITHAM J. Pure Appl. Sci. 24 (1)
    • Nature Climate Change, 3, 913–918.
    • Nicholls, R. J., & Cazenave, A. (2010). Sea-level rise and its impact on coastal zones. Science, 328, 1517–1520.
    • Rasuly, A.A. Naghdifar, R. Rasoli, M. (2010). Monitoring of Caspian Sea Coastline Changes Using Object-Oriented Techniques. Procedia Environmental Sciences 2 (2010) 416–426.
    • RasulyA ,Naghdifar .R, Rasoli. M, 2010, Monitoring of Caspian Sea Coastline Changes Using Objec Oriented Techniques, Procedia Environmental Sciences No,2 pp,416426.                      
    • Schenthamilselvan ,r.skakara,b .rajan, 2013;assessment of shoreline change along karantaka coast ,india using GIS,RS, indian journal of marine scinces.vol 43(7),july 2014,pp.               
    • Shaghude, Y.W., Wannäs, K.O., Lundén, B., 2003. Assessment of shoreline changes in the western side of Zanzibar channel using satellite remote sensing. Int. J. Remote Sensing 24 (23), 4953–4967
    • Simon, patric,. 2010, Remote Sensing in Geomorphology, Newdelhi, Oxford Book Company.
    • Sun, Meixian, Zhang, Wei, 2004. Study on coastline remote sensing survey and application in Fujian Province. Journal of Oceanography in Taiwan Strait 23 (2), 213–219.
    • Tamassoki, E. Amiri, H. Soleymani, Z. (2016). Monitoring of shoreline changes using remote sensing (case study: coastal city of Bandar Abbas). Earth and Environmental Science 20: 012023.
    • TEMİZ, F. DURDURAN, S.S. (2016).Monitoring Coastline Change Using Remote Sensing and GIS Technology: A case study of Acıgöl Lake, Turkey. Earth and Environmental Science 44: 042033.
    • Tochamnanvit, T. Muttitanon, W. (2014). INVESTIGATION OF COASTLINE CHANGES IN THREE PROVINCES OF THAILAND USING REMOTE SENSING. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-8, 2014.
    • Tochamnanvit, T. Muttitanon, W. (2014). Investigation of coastline changes in three provinces of thailand using remote sensing. The international archives of the photogrammetry, remote sensing and spatial information sciences, volume xl-8.
    • Webb, E. L., Friess, D. A., Krauss, K. W., Cahoon, D. R., Guntenspergen, G. R., & Phelps, J. (2013). A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Climate Change, 3, 458–465.
    • Yagoub, M.M. Kolan, G.R. (2006). Monitoring coastal zone land use and land cover changes of abu dhabi using remote sensing. indian society of remote sensing. 34: 1
    • Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., et al. (2013). The role of satellite remote sensing in climate change studies. Nature Climate Change, 3, 875–883.
    • Yang, Xiaojun, Damen, M.C.J., van Zuidam, R.A., 1999. Satellite remote sensing and GIS for the analysis of channel migration changes in the active Yellow River Delta, China. JAG 1 (2), 146–157.