تحلیل ژئومورفولوژیکی مجرای رودخانه قره‌سو با استفاده از مدل سلسله مراتبی رزگن ( پایین‌دست سد سبلان تا تلاقی رودخانه اهر چای)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تبریز

2 دانشگاه تهران

چکیده

در این پژوهش بخشی از مجرای رودخانه قره‌سو با استفاده از مدل ژئومورفولوژیکی رزگن مورد تحلیل و طبقه‌بندی قرار گرفت. این پژوهش متکی بر نقشه‌های توپوگرافی 1:2000 و مطالعات میدانی بوده است. در این تحقیق، برای محاسبه پارامترهای نسبت گود شدگی و نسبت عرض به عمق لب­پری از مدل هیدرودینامیکی HEC-RAS به همراه الحاقی HEC-GeoRAS استفاده گردید. بررسی نتایج مدل رزگن نشان داد که اکثر مقاطع رودخانه قره‌سو در طبقه‌ی C و E مدل سلسله مراتبی رزگن قرارگرفته‌اند. رودخانه قره‌سو در طبقه C دارای مجرای پهن‌تر و کم‌عمق‌تری می‌باشد و همچنین پهنه سیلابی رودخانه در این طبقه توسعه‌یافته و دره‌های آن عریض است. این رودخانه در طبقه E نیز دارای مجرای عمیق و باریک (نسبت عرض به عمق کم) بوده ولی پهنه سیلابی آن عریض و توسعه‌یافته است. با در نظر گرفتن متغیر شیب و مواد بستر می‌توان گفت رودخانه قره‌سو، در بازه اول در طبقه‌ی C3b وE3b، در بازه دوم، سوم، چهارم و پنجم در طبقه‌ی C4b، E4b، C5، در بازه ششم در طبقه‌ی E5 و C5 و درنهایت در بازه هفتم در طبقه‌ی C5c و E5 قرارگرفته است. همچنین با توجه به نتایج به‌دست‌آمده می‌توان بیان کرد که رودخانه قره‌سو در بخش‌هایی که مقاطع در طبقه‌ی C قرارگرفته است، دارای حساسیت به آشفتگی بسیار بالا، پتانسیل بازیابی خوب، تأمین رسوب بالا، کنترل پوشش گیاهی بسیار بالا و در بخش‌هایی که مقاطع در طبقه E واقع‌شده است، رودخانه دارای حساسیت به آشفتگی بسیار بالا، پتانسیل بازیابی خوب، تأمین رسوب متوسط، و کنترل پوشش گیاهی بسیار بالا می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Geomorphological Analysis of Gara Sou River Channel Using Hierarchical Rosgen Model (From Sabalan Dam to Confluence of Ahar-Chay River)

نویسندگان [English]

  • mohamad hosein rezaei moghadam 1
  • mohamad reza nikjoo 1
  • mehdi yasi 2
  • masoud rahimi 1
1 tabriz university
2 university of tehran
چکیده [English]

Introduction
Streams typically have similar suites of channel morphologies, with repeatable patterns of occurrence that have resulted in numerous classification efforts (Roper et al., 2008: 417-427). Recent approaches for river classification focus on watershed analysis related to land management and stream restoration, using a hierarchical approach that nests successive scales of physical and biological conditions and allows a more holistic understanding of basin processes (Shroder, 2013: 739). One of the most widely used hierarchical channel classification systems was developed by Rosgen (Shroder, 2013: 742). In the current study, Gara Sou river channel planform are studied by using Rosgen geomorphological model in combination with HEC-RAS model.
Materials and methods
This study is based on fieldworks and topographic maps of scale 1: 2000 (Ardabil Regional Water Authority). To determine the friction coefficient distribution of channel and floodplain, land cover maps was generated using Google Earth satellite imagery. Rosgen (1985, 1994, and 1996) hierarchical system was used to analysis of river channel morphology. The Rosgen system uses six morphological measurements for classifying a stream reach-entrenchment, width/depth ratio, sinuosity, number of channels, slope, and bed material particle size. In this research, some of these parameters were calculated using HEC-RAS hydrodynamic model. For steady, gradually varied flow, the primary procedure for computing water surface profiles between cross-sections is called the direct step method. The basic computational procedure is based on the iterative solution of the energy equation. Given the flow and water surface elevation at one cross-section, the goal of the standard step method is to compute the water surface elevation at the adjacent cross-section. The flow data for HEC-RAS consists of flow regime, discharge information, initial conditions and boundary conditions (HEC, 2010).
Results and discussion
According to calculations made in seven reach has been in class C and E, hierarchical model Rosgen. Gara Sou River in class C has a wider and shallower channel and floodplain width significantly developed. Gara Sou River in class E also has a deep and narrow channel (width to depth ratio) but floodplain width developed. In reach (1) floodplain width due to low geological control variable. In this reach was due to power of river, the bed river is cobble and gravel that leads to the river bed is in the Armoring range. With regard to slope variables and bed material, it is placed in the class C. in this class have a mean energy and high sediment load. Energy waste by meandering, bed forms (Pool- Riffle) and vegetation occurs. In the reaches of 2, 3, 4 and 5 width floodplain will be a significant development. In the reaches type of bed river is changed to gravel and sand and more of gravel and sand are. River slope in this reaches are between 0.02 and 0.039. In this reaches (2, 3, 4, and 5) river in the most part located class of C4b Rosgen model and only in some sections of the river have been E4b class. Average width to depth ratio is calculated 16.14 for the total reaches. In this reaches riparian vegetation are mostly dense shrubs that this high density of riparian vegetation plays an important role in the stability of the banks river in this reaches. In the end of reach (5) and reach (6) river slope between 0.001 and 0.02 is located and bed River is sand that often makes the river in this section in class C5 in hierarchical Rosgen model. Average width to depth ratio is calculated 15.46 for the total reaches. In reach (7) river slope to less than 0.001, but the bed river is still sand. According to the results, the major part of this reach is located class C5c and only in small portions cross sections of the E5 is placed class.
 
Conclusion
In this study, Gara Sou River channel was classified using geomorphological Rosgen model on the first and second levels. Despite the widespread use Rosgen model, has been criticized by some researchers. Problems with the use of the classification are encountered with identifying bank full dimensions, particularly in incising channels and with the mixing of bed and bank sediment into a single population. Gara Sou River in parts of Type E has a low sediment supply, average potential bank erosion control and vegetation are very high. The rivers carry sediment are very efficient and river is low energy, loss of energy through the meandering, bed forms and vegetation occurs. Also this river in parts of the Type C has a high sediment supply, very high potential bank erosion control and vegetation is very high. In fact, vegetation combined with the bank erosion, determines the amount of lateral adjustment and sustainability of this river.
 

کلیدواژه‌ها [English]

  • Stream Classification
  • Flood prone area
  • Rosgen model
  • Hydrodynamic HEC-RAS model
  • Gara Sou River
  • خیری زاده، منصور، 1395، تحلیل مورفودینامیک و تغییرات جانبی مجرای رودخانه زرینه­رود (از شاهین­دژ تا دریاچه ارومیه)، رساله دکتری، استاد راهنما، رضایی مقدم، محمدحسین، رشته‌ی ژئومورفولوژی، دانشکده جغرافیا و برنامه‌ریزی، دانشگاه تبریز.
  • رضایی مقدم، محمدحسین؛ معصومه، رجبی؛ خیری زاده، منصور؛ 1395، طبقه‌بندی و ارزیابی پتانسیل بازسازی رودخانه زرینه‌رود با استفاده از مدل رزگن، چهارمین همایش ملی انجمن ایرانی ژئومورفولوژی، صص 111-108.
  • روستایی، شهرام؛ خورشید دوست، علی­محمد؛ خالقی، سمیه، 1392، ارزیابی مورفولوژی مجرای رودخانه لیقوان با روش طبقه­بندی راسگن، پژوهش­های ژئومورفولوژی کمّی، شماره 4، صص 16-1.
  • لایقی، صدیقه؛ کرم، امیر؛1393، طبقه‌بندی هیدروژئومورفولوژیکی رودخانه جاجرود با مدل رزگن، پژوهش­های ژئومورفولوژی کمّی، شماره 3، صص 143-130.
  •   یاسی، مهدی؛1394، جزوه درسی مهندسی رودخانه پیشرفته(قسمت اول)،کارشناسی ارشد و دکتری، گروه مهندسی آب دانشگاه ارومیه.
  • یمانی، مجتبی؛ تورانی، مریم، 1393، طبقه‌بندی ژئومورفولوژیکی الگوی آبراهه طالقان رود در محدوده شهرک طالقان از طریق روش رزگن، پژوهش‌های جغرافیای طبیعی، شماره 2، صص 198-183.

 

  • Ackerman, C. T. (2009). HEC-GeoRAS GIS Tools for support of HEC-RAS using ArcGIS. United States Army Corps of Engineers, Davis.
  • Brunner, Gary .W (2010). Hec-ras River analysis system system hydraulic reference manual, us army corps of engineers, version 4.1.
  • Crosato, Alessandra. (2008). Analysis and modelling of river meandering. PhD thesis, Published and distributed by IOS Press under the imprint Delft University Press.
  • Di Baldassarre, G. (2012). Floods in a Changing Climate: Inundation Modelling (Vol. 3). Cambridge University Press.
  • Garde, R.J. (2006). River morphology. New Age International (P) Ltd., Publishers. 479p.
  • Garde, R.J. (2006). River morphology. New Age International (P) Ltd., Publishers. 479p.
  • Kondolf, G. Mathias and Piegay, Herve. (2003). Tools in fluvial geomorphology. John Wiley & Sons Ltd. 688 P.
  • Kondolf, G. Mathias and Piegay, Herve. 2003. Tools in fluvial geomorphology. John Wiley & Sons Ltd. 688 P.
  • Merwade, V.M. (2004). Geospatial description of river channels in three dimensions. Doctoral thesis, The University of Texas at Austin.
  • Montgomery, D. R. and Buffington, J. M. (1997). Channel reach morphology in mountain drainage basins. Geological Society of America Bulletin 109 (5): 596-611.
  • National Engineering Handbook (2007), Rosgen Geomorphic Channel Design, United States Department of Agriculture, Natural Resources Conservation Service. Chapter 11, No.7.
  • Roper, Brett B., Buffington, John M., Archer, Eric. Moyer, Chris. Ward, Mike. (2008). the role of observer variation in determining rosgen system types in northeastern Oregon mountain streams. Journal of the American water resources association, vol. 44, No. 2. pp: 417- 427.
  • Rosgen, David L. (1994). A classification of natural rivers. Catena 22, pp. 169-199.
  • Sear et al. 2003. Guidebook of Applied Fluvial Geomorphology, R&D Technical Report FD1914. Defra. London.
  • Shroder, John F. (2013). Treatise on geomorphology, volume 9: treatise on fluvial geomorphology. Elsevier Inc. 860p.
  • Simon, A., Doyle, M., Kondolf, M., Shields, F. D., Rhoads, B., & McPhillips, M. (2007). Critical Evaluation of How the Rosgen Classification and Associated “Natural Channel Design” Methods Fail to Integrate and Quantify Fluvial Processes and Channel Response1.
  • The Federal Interagency Stream Restoration Working Group. (2001). Stream corridor restoration: principles, processes, and practices. Adopted part 653 of National Engineering Handbook, USDA-Natural Resources Conservation Service.
  • The Federal Interagency Stream Restoration Working Group. 2001. Stream corridor restoration: principles, processes, and practices. Adopted part 653 of National Engineering Handbook, USDA-Natural Resources Conservation Service.
  • Ward,Andy,L.Dabrosio,Meckleburg,Den(2008) Stream Classification, Agricalture and natural resources,AEX -445-01,pp 1-8.