تحلیل رگرسیونی روابط بین ژئومورفولوژی و پوشش گیاهی با تأکید بر مقیاس فضایی (مطالعه موردی، حوضه‌های آبخیز ارسباران: ناپشته‌چای، ایلگینه‌چای و مردانقم‌چای)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه محقق اردبیلی

2 دانشگاه آزاد اسلامی واحد اهر

چکیده

این پژوهش با هدف آگاهی از کم و کیف روابط فضایی بین پارامترهای ژئومورفولوژی و فراوانی پوشش گیاهی در حوضه­های آبخیز ارسباران (سه حوضه ناپشته­چای، ایلگینه­چای و مردانقم­چای) انجام گرفت. در این راستا با توجه به اهمیت زیاد مقیاس در مطالعات فیتوژئومورفولوژی، پی­گیری این روابط در دو مقیاس حوضه و زیرحوضه­ها مورد تاکید قرار گرفت. داده­های مورد استفاده شامل تصویر ماهواره­ای لندست و مدل رقومی ارتفاع SRTM بود که به ترتیب شاخص گیاهی NDVI به عنوان متغیر وابسته و 28 پارامتر ژئومورفومتری به عنوان متغیرهای مستقل از آن­ها استخراج گردید. پس از نرمال­سازی لایه­های رستری متغیرها در دامنه صفر تا یک، آزمون روابط رگرسیونی چندمتغیره فضایی به روش گام به گام بین متغیرهای ژئومورفیک و فراوانی پوشش گیاهی در محیط نرم­افزاری SAGA انجام شد. نتایج گام­های رگرسیونی نشان داد که 8 پارامتر عمق دره، شاخص موقعیت توپوگرافی، ارتفاع، شیب، موقعیت دامنه، شاخص جهت شیب، تحدب سطح زمین و انحناء عمومی، مهم­ترین متغیرها در تبیین تغییرات فضایی پوشش گیاهی می­باشند. نتایج نهایی تحلیل­های رگرسیونی حاکی از وجود بهترین مدل رگرسیونی در حوضه آبخیز مردانقم­چای با ضریب تعیین 32/0 و ضعیف­ترین مدل رگرسیونی در حوضه آبخیز ناپشته­چای با ضریب تعیین 11/0 بود. حوضه ایلگینه­چای با داشتن شرایط بینابین از مدل رگرسیونی با ضریب تعیین 21/0 برخوردار بود. اما در مقیاس زیرحوضه نتایج حاصل دلالت بر وجود تفاوت قابل توجه بین زیرحوضه­ها و بین زیرحوضه­ها و حوضه­ها به لحاظ شدت و ضعف روابط فضایی داشت. بیشینه ضرایب تعیین برابر با 42/0، 51/0 و 62/0 و کمینه آن­ها برابر با 08/0، 15/0 و 13/0 به ترتیب در زیرحوضه­های شاخص ناپشته­چای، ایلگینه­چای و مردانقم­چای گویای این تفاوت­ها بود. این تفاوت و تمایز علاوه بر این که به بهبود فهم روابط فضایی ژئومورفولوژی و پوشش گیاهی در مقیاس زیرحوضه نسبت به مقیاس حوضه اشاره داشت، اولویت­بندی زیرحوضه­ها را به لحاظ حساسیت فیتوژئومورفیک میسر ساخت.

کلیدواژه‌ها


عنوان مقاله [English]

Regession analysis of geomorphic-vegetation cover relationships with emphasis on spatial scale (case study, Arsbaran catchments: naposhtehcay, ilghinehcay and mardanqumcay)

نویسندگان [English]

  • morteza gharachorlou 1
  • fariba esfandiyari 1
  • ali dalal oghli 2
1 mohaghegh ardabili university
2 ahar azad university
چکیده [English]

Extended Abstract
1- Introduction
Special and sensitive role of vegetation cover in ecosystem sustainability and moderating hazards such as floods, erosion and pollution of water resources persuades us to understand the environmental variables affecting the growth and development of it. This issue particularly is important for susceptible mountainous catchments. In these environments, geomorphic variables as special representative of environmental factors have close and interweaved relation to vegetation cover. So, knowledge of the relationships between geomorphology and vegetation can help us to better manage and maintain the mountainous ecosystems. The understanding requires analysis the spatial relationships and scientifically accurate spatial modeling. In this regard, the emergence and development of remote sensing (RS) and geographic information system (GIS) have widely improved modelling the spatial variations of vegetation cover. However, a few issues that are fundamental and important in geomorphic-vegetation relations must be noticed. Maybe, the scale is the most important issue in phytogeomorphic researches. This study aimed to assess and determine the relationships between geomorphology and vegetation cover using spatial regression approach in Arasbaran catchments (3 catchments: Naposhtehchhay, Ilginehchay and Mardanqumchay). We have particular stress for effect the scale on the relations and comparison of predictive regression models in multiple scales based on catchment and subcatchment divisions. 
2-Materials and Methods
Our approach is based on spatial multiple regression analysis between geomorphologic parameters and abundance of vegetation. In this regard, 27 geomorphomety parameters as independent variables and Normalized Difference Vegetation Index (NDVI) as the dependent variable were computed from Landsat imagery (ETM sensor) and digital elevation model (DEM) SRTM. First, preprocessing operations including atmospheric correction (noise reduction) and geometric correction were performed on the sattellite image. DEM is preprocessed by removal of sinks in GIS environment. After radiometric and geometric corrections, raster layers of geomorphic parameters extracted and prepared using GIS and SAGA softwares and NDVI layer computed using IDRISI software. Furthermore, determination and mapping the cathments and subcatchments performed by ArcHydro extension of GIS.Given the various scales of the variables, it was necessary to normalize the scale of data ( ) using the following formula:

In the formula, x: raw value of the variable; min (x): minimum of the variable; max (x): maximum of the variable.We use the SAGA for performing the spatial multiple regression (stepwise method) with 0/01 signisicance level. We examine the regression relations in two scales: 1- catchments 2- subcatchments. Finally, we compare different spatial multiple ression models at 2 scale for selection of best models.   
3- Results and Discussion
Initial results of showed that many of geomorphological parameters had significant relations with vegetation cover in spite of their low correlation coefficients. The results of rgression steps indicated that 8 parameters including valley depth, topographic position index, elevation, slope, slope position, transformed aspect, earth surface convexity and general curvature are the most important inependent variables in explaining the variance of dependent variable at catchment scale. The best linear regression model was abtained in Mardanqumchay catchment (R2= 0/32) in among regression models. In contrast, the weakest regression model is abtained in Naposhtehcay catchment (R2= 0/11) in among regression models. It appears that Ilghinehcay catchment have moderate phytogeomorphic conditions having moderate rgression model (R2= 0/21) in among regression models. It is found that there is a correspondence between ruggedness of catchments and prediction power and efficiency of the regression models. The results of regression analysis at subcatchment scale were significantly different. At this scale, best regression models observed with 0/42, 0/51 and 0/62 R2 values in Naposhtehchhay, Ilginehchay and Mardanqumchay, respectively. In contrast, weakest regression models observed with 0/08, 0/15 and 0/13 R2 values in Naposhtehchhay, Ilginehchay and Mardanqumchay, respectively. Hence, not only there are many differences among subcatchments, but there is considerable difference between catchments and subcatchments in the respect of intensity of relations between geomorphic parameters and vegetation cover.    
4- Conclusion
Results of the research showed the geomorphic parameters including valley depth, topography position index, elevation, slope, slope position, transformed aspect, earth surface convexity and general curvature valley are the most effective variables in explaining the spatial variations of vegetation cover in Arasbaran catchments. The selected geomorphic variables, Wholly, are partly complete reflection of geomorphology of a site, not only keeping the relation between form and process, are the special representative of other environmental factors. Although significant portion of spatial variations of the vegetation cover could not be explained by final regression models at cathment scale, but the predictive models are valuable, considering the application of pixel-based spatial approach in regression analysis, in one hand and complex non-linear relationships between vegetation cover and geomorphology, in other hand. At subcatchment scale, some of these relations are stronger than catchment scale and regression models are more efficient, leading to inhance the understanding of relationships between geomorphology and vegetation. Furthermore, we can give preference to subcathments based on strength of regression relations (R2 rates), which determines the phytogeomorphic sensivity of them, in order to manage and support the mountainous ecosystems. It is concluded that important information about relationships between geomorphology and vegetation can be acquireed at multiple scales, simultaneously.

کلیدواژه‌ها [English]

  • Spatial Regression
  • geomorphic parameter
  • Vegetation cover
  • Scale
  • Arasbaran
  • احمدی، حسن؛ جوانشیر، کریم؛ قنبریان، غلام­عباس؛ حبیبیان، سیدحمید، 1381، بررسی ویژگی­های اکولوژیک جوامع گیاهی با توجه به واحدهای ژئومورفولوژی مطالعه موردی: منطقه چنار راهدار استان فارس، مجله منابع طبیعی ایران، جلد 55، شماره 1، صص 94- 81.
  • اسماعیل­زاده، امید؛ حسینی، سیدمحسن، 1386، رابطه بین گروه­های اکولوژیک گیاهی با شاخص­های تنوع زیستی گیاهی در ذخیره­گاه سرخدار افراتخته، مجله محیط­شناسی، شماره 43، صص 30- 21.
  • امیدوار، کمال؛ نارنگی­فرد، مهدی؛ عباسی، حجت­ا... ، 1394، آشکارسازی تغییرات کاربری اراضی و پوشش گیاهی در شهر یاسوج با استفاده از سنجش از دور، فصلنامه جغرافیا و آمایش شهری ـ منطقه­ای، شماره 16، صص 126- 111.
  • بهرامی، شهرام؛ شایسته، کامران؛ بهرامی، سجاد، 1392، بررسی نقش ژئومورفولوژی در تراکم پوشش گیاهی طاقدیس نواکوه، فصلنامه مطالعات جغرافیایی مناطق خشک، شماره 14، صص 101- 83..
  • تقی­پور، علی؛ رستگار، شفق، 1389، بررسی نقش فیزیوگرافی بر روی پوشش گیاهی با استفاده از سامانه اطلاعات جغرافیایی (مطالعه موردی: مراتع هزار جریب بهشهر- مازندران)، مجله مرتع، سال چهارم، شماره 2، صص 177- 168.
  • حسینی، سیدمحمود؛ شفیعی، حامد؛ اختصاصی، محمدرضا؛ محتشم­نیا، سعید، 1392، تاثیر خشکسالی­ها بر تخریب پوشش گیاهی منطقه سیستان، فصلنامه تحقیقات مرتع و بیابان ایران، جلد 20، شماره 2، صص 239- 227.
  • زارع مهرجردی، محمد؛ قدوسی، جمال؛ نوروزی، علی­اکبر؛ لطف­ا...زاده، دادور، 1386، بررسی رابطه بین پوشش گیاهی با خاک و شکل زمین د‌ر حوزه د‌ق فینو بند‌رعباس. فصلنامه پژوهش و سازندگی در منابع طبیعی، شماره 76، صص 150- 144.
  • سلیمانی، کریم؛ شکریان، فاطمه؛ تمرتاش، رضا؛ بنی­هاشمی، معصومه، 1389، تحلیل کارایی داده­های ETM در تعیین مناسب­ترین شاخص­های گیاهی (مطالعه موردی: حوضه آبخیز وازرود)، فصلنامه سنجش از دور و GIS ایران، سال دوم، شماره 4، صص 82- 71.
  • صحتی، محمد طاهر، 1395، مطالعه بیوژئومورفولوژی مناطق خشک در مقیاس واحدهای ژئومورفیک با تاکید بر پوشش گیاهی (مطالعه موردی: بخش­های چاهورز و علامرودشت شهرستان لامرد، پایان­نامه دکتری، به راهنمایی: احمد نوحه­گر، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان. 
  • فرج زاده، منوچهر، 1386، تکنیک­های اقلیم شناسی، تهران، انتشارات سمت.
  • علوی­پناه، سیدکاظم، 1385، بررسی تغییرپذیری طیفی پدیده­های مختلف پوشش گیاهی و آب با استفاده از سنجش از دور، فصلنامه پژوهش­های جغرافیایی، شماره 58، صص 97- 81.
  • قربانلی، مه­لقا؛ حسین­پور ثابت، زهرا؛ رضایی، محمدعلی، 1393، بررسی فلور و تاثیر فاکتورهای توپوگرافی بر تغییرات پوشش گیاهی منطقه حفاظت­شده جهان­نما (مراتع سرعلی­آباد)، نشریه گیاه و زیست­بوم، سال 10، شماره 40، صص 33- 23.
  • گویلی کیلانه، ابراهیم؛ وهابی، محمدرضا، 1391، تاثیر برخی خصوصیات خاک بر پراکنش پوشش گیاهی مراتع زاگرس مرکزی ایران، مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک سال شانزدهم، شماره 15، صص 258- 245.
  • مدنیان، ملیحه­السادات؛ سفیانیان، علیرضا، 1391، بررسی امکان پایش تغییرات پوشش گیاهی با استفاده از شاخص­های پوشش گیاهی (مطالعه موردی: منطقه فلاورجان)، دومین کنفرانس برنامه­ریزی و مدیریت محیط زیست، 26 تا 27 اردیبهشت 1391، تهران، دانشگاه تهران.
  • میرزایی­زاده، وحید؛ نیک­نژاد، مریم، 1392، شناسایی عوامل موثر بر کاهش پوشش جنگلی با استفاده از تصاویر ماهواره لندست (مطالعه موردی: منطقه جنگلی بیوره- شهرستان ملکشاهی)، نشریه حفاظت و بهره­برداری از منابع طبیعی، جلد 1، شماره 2، صص 108- 91.
  • ولیزاده کامران، خلیل؛ مرادزاده، نسترن، 1383، بررسی شاخص­های پوشش گیاهی با استفاده از اطلاعات ماهواره لندست سنجنده TM، فصلنامه فضای جغرافیایی، شماره 12، 140- 115.
  • نقی­نژاد، علیرضا؛ سیداخلاقی، سیدعباس؛ سعیدی­مهرورز، شهریار، 1394، بررسی ارتباط عوامل اکولوژیک با پوشش گیاهی زیستگاه پلنگان، منطقه حفاظت­شده آق­داغ استان اردبیل، مجله بوم­شناسی کاربردی، سال 4، شماره 13، صص 48- 33.
  • ولایتی، سعدا....، کدیور، علی­اصغر، 1385، چالش های زیست­محیطی جنگل­ها و مراتع ایران و پیامدهای آن، مجله جغرافیا و توسعه ناحیه­ای، شماره 7، صص 72- 53.
  • Agren, A.M., Lidberg, W., Stromgren, M., Oglive, J., Arp, P.A., 2014. Evaluating digital terrain indices for soil wetness mapping – a Swedish case study, Hydrology and Earth System Sciences, 11:pp. 4103-4129.
  • Aparna, P., Nigee, K., Shimna, P., Drissia, T.K., 2015. Quantitative analysis of geomorphology and flow pattern analysis of muvattupuzha river basin using geographic information system. Aquatic Procedia, 4, pp. 609 – 616.
  • Bagyaraj, M., Gurugnanam, B., 2011. Significance of morphometry studies, soil characteristics, erosion phenomena and landform processes using remote sensing and gis for kodaikanal hills, a global biodiversity hotpot in western ghats, dindigul district, tamil nadu, south India. Environmental and Earth Sciences, 3(3), pp. 221-233.
  • Band, L.E., Hwang, T., Hales, T.C., Vose, J., Ford, C., 2012.  Ecosystem processes at the watershed scale: Mapping and modeling ecohydrological controls of landslides. Geomorphology, 137, pp. 159-167.
  • Deng, T., Chen, X., Chuvieco, E., Warner, T., Wilson, J.P., 2007. Multi-scale linkages between topographic attributes and vegetation indices in a mountainous landscape, Remote Sensing of Environment, 111, pp. 122–134.
  • Gruber, S., Peckham, S. 2009. Land-Surface Parameters and Objects in Hydrology. In T. Hengl & H. Reuter (Eds.), Geomorphometry (pp. 171-194). Amsterdam, Elsevier.
  • Hickey, R. 2000. Slope Angle and Slope Length Solutions for GIS. Cartography, 29 (1), pp. 1 - 8.
  • Hoersch, B., Braun, G., Schmidt, U., 2002. Relation between landform and vegetation in alpine regions of Wallis, Switzerland. A multiscale remote sensing and GIS approach. Computers, Environment and Urban Systems, 26, pp. 113-139.
  • Iverson, L.R., Dale, M.E., Scott, C.T., Prasad, A., 1997. A GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests (U.S.A). Landscape Ecology, 12, pp. 331–348.
  • Jafari, R., 2007. Arid land condition assessment and monitoring using multispectral and hyperspectral imagery. Ph.d Thesis in Soil and Land Systems, School of Earth and Environmental Sciences, University of Adelaide, Australia. 141p.
  • Jenness, J., 2006. Topographic Position Index (tpi_jen.avx) extension for ArcView 3.x,v. 1.2. Jenness Enterprises, Available at: http://www.jennessent.com/arcview/tpi.htm.
  • Jenness, J., 2012. DEM Surface Tools. Jenness Enterprises, Available at: http://www. jennessent.com/arcgis/surface_area.htm.
  • Kerr, J.T., Ostrovsky, M.,  2003. From space to species ecological applications for remote sensing. Trends in Ecology and Evolution, 18(6), pp. 299-305.
  • Khafaghi, O., Omar, K., 2012. Geographical attributes analysis for egyptian hypericum sinaicum. Universal Journal of Environmental Research and Technology, 2 (6), pp. 500-514.
  • Koppad, A.G., Tikhile, P., 2013. Influence of topography on spatial distribution of vegetation in Uttara Kannada district. International Journal of Environmental Biology, 3(3), pp. 96-99.
  • Ma, J., Lin, G., Chen, J., Yang, L., 2010. An Improved Topographic Wetness Index Considering Topographic Position. 18th International Conference on Geoinformatics, 18-20 June 2010, Beijing, pp. 1-4. DOI: 10.1109/GEOINFORMATICS.2010.5567607.
  • Mokarram, M., Sathyamoorthy, D., 2016. Relationship between landform classification and vegetation (case study: southwest of Fars province, Iran). Geosciences, 8, pp. 302-309.
  • Moor, I.D., Grayson, R.B., Ladson, A.R., 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5, pp. 3-30.
  • Olaya, V., 2004. A gentle introduction to SAGA GIS. Free downloadable from: http://geosun1.uni-geog.gwdg.de/saga/html/index.php.
  • Olaya, V., 2009. Basic land-surface parameters. In T. Hengl & H. Reuter (Eds.), Geomorphometry (pp. 141-169). Amsterdam, Elsevier.
  • Purevdorj, T.S., Tateishi, R., Ishiyama, T., Honda, Y., 1998. Relationships between percent vegetation cover and vegetation indices. International Journal of Remote Sensing, 19 (18), pp. 3519-3535
  • Ressler, L., 2006. Geomorphic Controls of Spatial Pattern and Process at Alpine Treeline. The Professional Geographer, 58 (2), pp. 124-138.
  • Rodriguez-moreno, V.M., Bullock, S.H., 2014. Vegetation response to hydrologic and geomorphic factors in an arid region of the Baja California Peninsula. Environ Monit Assess, 186, pp.1009–1021.
  • Spadavecchia, L., Williams, M., Bell, R., Stoy, P.C., Huntley, B., VanWijk, M.T., 2008. Topographic controls on the leaf area index and plant functional type of a tundra ecosystem. Ecology, 96, pp. 1238-1251.
  • Temimi, M., Leconte, R., Chaouch, N., Sukumal, P., Khanbilvardi, R., Brissette, F., 2010. A combination of remote sensing data and topographic attributes for the spatial and temporal monitoring of soil wetness. Hydrology, 388, pp. 28-40.
  • Vaughan, I.P., Diamond, M., Gurnell, A.M., Hall, K.A., Jenkins, A., Milner, N., Naylor, L.A., Sear, D.A., Woodward, G., Ormerod, S.J., 2009.Integrating ecology with hydromorphology: a priority for river science and management. Aquatic Conservation: Marine and Freshwater Ecosystems, 19, pp. 113-125.
  • Vilwock, J.L., Kabrick, J.M., Mcnab, W.H., Dey.D.C., 2010. Landform and terrain shape indices are related to oak site index in the missouri Ozarks, Proceedings of the 17th central hardwood forest conference; 2010 April 5-7, U.S. Department of Agriculture, Forest Service, Northern Research Station: 197-207.
  • Wang, Y., Hou, X., Wang, M., Wu, L., Ying, L., Feng, Y., 2012. Topographic controls on vegetation index in a hilly landscape: a case study in the Jiaodong Peninsula, eastern China. Environmental Earth Sciences, 70 (2), pp. 625-634.
  • Wilson, J.P., and Gallant, J.C. 2000. Terrain Analysis: Principles and Applications. New York, John Wiley and Sons. 479p.