ارزیابی حساسیت زمین‌لغزش با استفاده از الگوریتم ماشین پشتیبان‌بردار (مطالعه موردی: شهرستان کامیاران، استان کردستان)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه محقق اردبیلی

2 دانشگاه تبریز

3 دانشگاه کردستان

چکیده

یکی از انواع فرآیندهای دامنه­ای که هر ساله موجب خسارات جانی و مالی فراوان در بسیاری از نقاط ایران و جهان می­شود، پدیده زمین­لغزش است. شناسایی مناطق مستعد وقوع زمین­لغزش از طریق پهنه­بندی خطر، یکی از اقدامات مؤثر و ضروری در کاهش خطرات احتمالی و مدیریت آن می­باشد. هدف اصلی این پژوهش، ارزیابی حساسیت زمین­لغزش در شهرستان کامیاران با استفاده از مدل ماشین­پشتیبان­بردار می­باشد. در ابتدا، نقشه پراکنش زمین­لغزش با 60 نقطه لغزشی در منطقه مورد مطالعه با استفاده از منابع مختلف ترسیم گردید. پس از آن مکان­های لغزشی، به صورت تصادفی به یک نسبت 70 به 30 برای ساخت مدل زمین­لغزش و اعتبارسنجی آن تقسیم شدند. آموزش و صحت­سنجی تابع RBF از الگوریتم SVM توسط یک پایگاه داده مکانی با مجموع دوازده عامل زمین­لغزش از جمله شیب، جهت شیب، ارتفاع، انحنای شیب، انحنای عرضی شیب، انحنای طولی شیب، شدت تابش خورشید، لیتولوژی، کاربری اراضی، فاصله از گسل، فاصله از جاده و فاصله از رودخانه با توجه به مدل مرجع مورد بررسی قرار گرفتند. در نهایت منطقه مورد مطالعه به پنج کلاس حساسیت بسیار بالا، بالا، متوسط، کم و بسیار کم تقسیم شد. سپس عمکرد این الگوریتم با استفاده از منحنی ROC مورد بررسی قرار گرفت. نتایج نشان می­دهد که سطح زیر منحنی (AUC) با استفاده از مجموعه داده­های آموزشی (970/0) و با استفاده از داده­های صحت­سنجی (882/0) می­باشد. لذا تجزیه و تحلیل نتایج نشان­دهنده آن بود که تابع RBF مدل SVM عملکرد خوبی جهت ارزیابی حساسیت زمین­لغزش در منطقه مورد مطالعه دارد و نتایج به دست­آمده از این پژوهش می­تواند برای برنامه­ریزی کاربری اراضی، کاهش خطرات زمین­لغزش و تصمیم­گیری در مناطق مستعد ­لغزش مفید واقع گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Landslide Susceptibility assessment using Support vector machine algorithm (Case Study: Kamyaran County, Kurdistan province)

چکیده [English]

One of the slopping processes which created much damage in many locations of Iran and the world is Landslide phenomenon. Identification of susceptible areas to landslide occurrence is one of the basic measures for reduction of the possible risk and management. The main goal of this research is to evaluate Landslide Susceptibility assessment using Support vector machine algorithm. At first, a landslide inventory map with 60 landslide locations for the study area was drawn from various sources. Landslide locations were then spatially randomly split in a ratio of 70/30 for building landslide model and for the model validation.Training and testing of RBF Function the SVM algorithm was evaluated over an assembly of spatial attributes, which included slope angle, elevation, aspect, solar radiation, profile curvature, plan curvature, lithology, land use, distance to fault, distance to road and distance to river with respect of the referent model. Finally the study area was classified into five sensitivity classes’ very high, high, moderate, low and very low. Then Performance of the method has been evaluated using the ROC curve. The results show that area under the ROC curve (AUC) using training dataset is (0/950) and using validation dataset is (0/931). Therefore, analysis and comparison of the results show that RBF Function SVM model performed well for landslide susceptibility assessment in the study area and the results from this the results from this study can be useful for land use planning, mitigate landslide hazards and decision making in landslide prone areas.

کلیدواژه‌ها [English]

  • Susceptibility
  • Landslide
  • Support Vector Machine Algorithm
  • ROC curve
  • Kamyaran
  • ارومیه­ای علی، صفایی، مهرداد، 1377، کاربری زمین و تأثیر آن در ناپایداری دامنه­ها در نکارود، خلاصه گردهمایی علوم زمین، سازمان زمین­شناسی و اکتشافات معدنی کشور ، صفحه 37.
  • پورقاسمی، حمیدرضا، 1389، پهنه­بندی حساسیت زمین­لغزش با استفاده از مدل احتمالاتی وزن واقعه، مهندسی فناوری اطلاعات مکانی، سال یکم، شماره نهم، ص80 - 69.
  • حسین­زاده محمدمهدی، ثروتی­محمد­رضا، منصوری عادل، میرباقری بابک، خضری سعید 1388، پهنه بندی ریسک وقوع حرکات توده­ای توسط ازمدل رگرسیون لجستیک مسیر سنندج – دهگلان،. فصلنامه زمین­شناسی ایران، ش11، صص 37-27.
  • رنجبر، محسن، معمارافتخاری، محمد ، 1391، پهنه بندی پدیده­ی لغزش با استفاده از روش LNRFدر جاده هراز (از امام­زاده هاشم تا لاریجان)، فصلنامه انجمن جغرافیایی ایران ، شماره 33 ، ص 119.
  • روستایی، شهرام؛ خدائی، لیلا، 1395، ارزیابی روش­های تحلیل شبکه (ANP) و رگرسیون لجستیک در بررسی پتانسیل وقوع زمین­لغزش در محدوده محور و مخزن سد، مطالعه موردی: سد قلعه­چای، پژوهش­های ژئومورفولوژی کمی، سال پنجم، شماره 3، صص. 80 – 67.
  • شمسی پور، علی اکبر؛ هیمن شهابی؛ ممند سالاری؛ محمد عباسی.، 1389.    پهنه بندی خطر زمین لغزش با مورد: حوضه ی ،(AHP) استفاده از تحلیل سلسله مراتبی، آبخیز سقز. نشریه محیط جغرافیایی. شماره 1. ص 84.
  • شیرزادی، عطااله، سلیمانی کریم، حبیب­نژاد محمود، کاویان عطااله، چپی کامران 1396، معرفی یک مدل جدید ترکیبی الگوریتم مبنا به منظور پیش­بینی حساسیت زمین­لغزش­های سطحی اطراف شهر بیجار، جغرافیا و توسعه، شماره 46، صفحات 246 – 225.
  • مرادی، حمید رضا؛ محمدی، مجید؛ پورقاسمی، حمید رضا، 1391، حرکات دامنه­ای (حرکات توده­ای) با تأکید بر روش­های کمی تحلیل وقوع زمین­لغزش، انتشارات سمت، صفحه 2.
  • مددی، عقیل، 1387، ارزیابی و پهنه­بندی مخاطرات ژئومورفولوژی جاده تازه احداث سردابه و قوتور سویی، دانشگاه محقق اردبیلی، ص 57 .
  • میرصانعی، ر؛ مهدیفر، م. 1385. روش­ها و معیارهای بهینه جهت تهیه نقشه­های پهنه­بندی خطر زمین­لغزش، پژوهشکده سوانح طبیعی، 277 – 1.
  • ملکی، امجد، میلادی، بهزاد 1391، شبیه­سازی مناطق مستعد خندق­زایی با استفاده از روش SPI در حوضه­ی رودخانه مرگ، پژوهش­های ژئومورفولوژی کمی، شماره 3، صص 38 – 23.
  • یمانی، مجتبی، احمدآبادی، علی، زارع، غلامرضا، 1391، به­کارگیری الگوریتم ماشین های پشتیبان بردار در پهنه بندی خطر وقوع زمین لغزش (مطالعه موردی: حوضه آبریز درکه)، جغرافیا و مخاطرات محیطی، شماره سوم، صص 142 – 125.
  • یمانی، مجتبی، مقامی­مقیم، غلامرضا؛ عرب­عامری، علیرضا، شیرانی، کورش، 1396، رائه مدل ترکیبی نوین بهمنظور افزایش دقت تهیه نقشه­های حساسیت زمینلغزش با تأکید بر مدل رگرسیون وزنی جغرافیایی (GWR) (مطالعه موردی: حوضه دزعلیا، استان اصفهان(،پژوهش­های ژئومورفولوژی کمی، سال پنجم، شماره 4، صص. 40 – 15.
  •   Abedini M, Ghasemyan B, Rezaei Mogaddam M H, 2017. Landslide susceptibility mapping in Bijar city, Kurdistan Province, Iran: a comparative study by logistic regression And AHP models, Environ Earth Sci, 76:308, DOI 10.1007/s12665-017-6502-3.
  •   Ahmad, A., Dey, L., (2005). A feature selection technique for classificatory analysis. Pattern Recogn. Let. 26 (1), 43–56.
  •   Brown S.; Row lands, I. Nodal pricing in Ontario, 2009. Canada: Implications for solar PV electricity. Renew. Energy, 34, 170–178.
  •   Cevik E Topal T  2003. GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey) Environmental geology 44:949-962
  •   Costanzo D Rotigliano E Irigaray C Jiménez-Perálvarez JD Chacón J 2012. Factors selection in landslide susceptibility modelling on large scale following the GIS matrix method: application to the River Beiro Basin (Spain). Nat Hazards Earth Syst Sci 12:327–340.
  •   Cruden D.M. and Varnes D.J. 1996. Landslide types and processes. In: Turner A.K. and Schuster, R.L. Landslides, Investigation and Mitigation, Transportation Research Board Special Report 247, pp: 36-75.
  •   Dahal R.K. Hasegava Sh. Nonoura A. Yamanka M. Dhakal S. Pauudyal P. 2008. Predictive Modeling of Rainfall-Induced Landslide Hazard in the Lesser Himalaya of Nepal Based on Weights of Evidence, Geomorphology, Vol.102, NO.3-4, PP.496-510.
  • Dai, F., Lee, C., 2002. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42, 213–228.
  • Dehnavi A, Aghdam IN, Pradhan B, Varzandeh MHM, 2015. A new hybrid model usi step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuz inference system (ANFIS) for regional landslide hazard assessment in Iran Catena 135:122-148.
  • Ercanoglu M, Gokceoglu C ,2002. Assessment of landslide susceptibility for a landslide-prone area (North of Yenice, NW Turkey) by fuzzy approach. Environ Geol 41:720–730.
  • Faraji Sabokbar H, Shadman Roodposhti M, Tazik E, 2014. Landslide susceptibility mapping using geographically weighted principal component analysis. Geomorphology 226:15–24.
  • Goetz, J., R.H. Guthrie and A. Brenning., 2011. Integrating Physical and Empirical Landslide Susceptibility Models Using Generalized, Geomorphology, 129: 376-386.
  • Hastie, T., Tibshirani, R., Friedman, J.H., 2001. The Elements of Statistical Learning: Data Mining. Inference and Prediction. Springer Verlag, New York.
  • Hong H, Pradhan B, Xu C, Bui DT, 2015. Spatial prediction of landslide hazard at the Yihuang area (China) using two class kernel logistic regression, alternating decision tree and support vector machines Catena 133:266-281.
  • Jie Wang, Min Guo b, Kazuhide Sawada, Jie Lina, Jinchi Zhanga, 2015. Landslide susceptibility mapping in Mizunami City, Japan: A comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models, Catena 135: 271–282.
  • Kavzoglu, T., Sahin, E.K., Colkesen, I., 2014. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11 (3), 425e439.
  • Kavzoglu, T., Sahin, E.K., Colkesen, I., 2015. An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district Natural Hazards. 76, 471–496.
  • Koehorst, B.A.N. Kjekstad, O. Patel, D. Lubkowski, Z. Knoeff, J.G. Akkerman, G.J 2005. Workpackage 6 Determination of Socio- Economic Impact of Natural Disasters, Assessing socioeconomic Impact in Europe, PP.173.
  • Kornejady Aiding, Majid Ownegh b, Abdolreza Bahremand, 2017. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods, Catena 152 , 144–162.
  • Malamud. B.D., Turcotte, D.L, Guzzeti, F., Reicenbach, P., 2004. Landslide inventories and their statistical properties. Earth surf. Process 29. 687-711.
  • Marjanovi´c, M., Kovaˇcevi´c, M., Bajat, B., Voˇzenílek, V., 2011. Landslide susceptibility assessment using SVM machine learning algorithm, Engineering Geology, No. 123, Pp. 225–234.
  • Neamah Jebur, Mustafa Biswajeet Pradhan, and Mahyat Shafapour Tehrany ., 2015. Manifestation of LiDAR-Derived Parameters in the Spatial Prediction of Landslides Using Novel Ensemble Evidential Belief Functions and Support Vector Machine Models in GIS.  IEEE Journal of Selected Topi... > Volume: 8 Issue: 2, pp. 674-691.
  • Nithya, N.S., Duraiswamy, K., 2014. Gain ratio based fuzzy weighted association rule mining
  • classifier for medical diagnostic interface. Sadhana 39 (1), 39–52.
  • Ost, L., Van-Den, E.M., Poesen, J., and Vanmaercke-Gottigny, M.C. 2003. Characteristics and spatial distribution of large landslides in the Flemish Ardennes (Belgium). Zeitschrift für Geomorphologie N.F., 47(3): 329–350.
  • Peng Ling, Ruiqing Niu Bo Huang, Xueling Wua, Yannan Zhao, Runqing Ye, 2014. Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China. Geomorphology 204 287–301.
  • Pradhan B, Sezer EA, Gokceoglu C, Buchroithner MF, 2010. Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia) IEEE Transactions on Geoscience and Remote Sensing 48:4164-4177 doi:10.1109/tgrs.2010.2050328.
  • Pourghasemi.H. R. Moradi H. R.. Fatemi Aghda, S. M B. Gokceoglu Pradhan .2013. GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran). Arab J Geosci, DOI 10.1007/s12517-012-0825-x
  • Pradhan B, 2011. “Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in Malaysia”, Environmental Earth Sciences 63:329–349.
  • Quinlan, J.R. (1993). C4.5: programs for machine learning. Morgan Kaufmann, San Mateo, CA, USA.
  • Saha A, Gupta R, Arora M .2002. GIS-based landslide hazard zonation in the Bhagirathi (Ganga) valley, Himalayas International Journal of Remote Sensing 23:357-369.
  • Scholkoph, B., Smola, A.J., Williamson, R.C., Bartlett, P.L., 2000. New support vector algorithms. Neural Computation 12, 1207–1245.
  • Shahabi H, Khezri S, Ahmad BB, Hashim M, (2014), Landslide susceptibility mapping at central Zab basin, Iran: a comparison between analytical hierarchy process, frequency ratio and logistic regression models. CATENA 115:55–70.
  • Shirzadi Ataollah, Dieu Tien Bui,Binh Thai Pham, Karim Solaimani, Kamran Chapi, Ataollah Kavian, Himan Shahabi, 2017. Shallow landslide susceptibility assessment using a novel hybrid intelligence approach, Environmental Earth Sciences 76:60. Pp 1-18.
  • Sidle, R.C., and Ochiai, H., 2006. Landslides: Processes, Prediction, and Land use, Water Resource Monograph: 18, AGU books, ISSN: 0170-9600.  Pp 312 – 328.
  • Taner San, B., 2014.an evaluation of SVM using polygon-based random sampling in landslide Susceptibility mapping: The Candir catchment area (western Antalya, Turkey), International Journal of Applied Earth Observation and Geoinformation, No. 26, Pp. 399–412.
  • Thai Pham, B.T., Tien Bui, D., Indra, P., Dholakia, M.B., 2015a. Landslide susceptibility assessment at a part of Uttarakhand Himalaya, India using GIS – based statistical approach of frequency ratio method. International Journal of Engineering Research & Technology 4, 338–344.
  • Thai Pham, B.T., Tien Bui, D., Pourghasemi, H.R., Indra, P., Dholakia, M.B., 2015b. Landslide susceptibility assessment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Appl. Climatol. 122 (3e4), 1e19.
  • Thai Pham, B.T., Tien Bui, D., Dholakia,M.B., Prakash, I., Pham, H.V., 2016. A comparative study of least square support vector machines and multiclass alternating decision trees for spatial prediction of rainfall-induced landslides in a tropical cyclones area. Geotech. Geol. Eng. 34, 1–18.
  • Tien Bui, D., Tuan, T.A., Klempe, H., Pradhan, B., Revhaug, I., 2016. Spatial prediction
  • Models for shallow landslide hazards: a comparative assessment of the efficacy of Support vector machines, artificial neural networks, kernel logistic regression, and logistic Model tree. Landslides 13 (2), 361–378.
  • Tien Bui Dieu, Biswajeet Pradhan, Owe Lofman, and Inge Revhaug, 2012. Landslide Susceptibility Assessment in Vietnam Using Support Vector Machines, Decision Tree, a Naive Bayes Models, Mathematical Problems in Engineering. Pp 1-26, p 7.
  • Tien Bui Dieu, Tran Anh Tuan, Harald Klempe, Biswajeet Pradhan, Inge Revhaug, .2015. spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree, Landslides.
  • Tsangaratos P, Ilia I 2015. Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, Greece Landslides: 1-16 doi: 10.1007/s10346-015-0565-6.
  • Van Westen, C.J., Castellanos, E, Kuriakose. S.L, 2008. Spatial data for landslide susceptibility, hazard, and vulnerability assessment an overview. Engineering Geology 102, pp. 112 – 131.
  • Vapnik, V.N., 1995. The Nature of Statistical Learning Theory. Springer, New York.
  • 2 pp.
  • Venkatesan, M., Thangavelu, A., Prabhavathy, P., 2013. An improved Bayesian classification data mining method for early warning landslide susceptibility model using GIS. In: Proceedings of Seventh International Conference on Bio-inspired Computing: Theories and Applications. Springer, pp. 277 - 288.
  • Wang.Y; Bouten. W; Chen. Q, 2015.ted Landslide Field Data 12(2): 268-288.
  • 56- Wilson, J.P., and Lorang M.S. 2000. Chapter 6, Spatial Models of Soil Erosion and GIS. Spatial Models and GIS: New Potential and New Models, 83-86.
  • Xu C, XiweiXu a,n, FuchuDai b, ArunK. Saraf, 2012. Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in China. Computers & Geosciences 46, 317–329.
  • Xu , Chong, Dai Fuchu, Xu Xiwei , Lee Hsi Yuan, 2012b.  GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang, China, Geomorphology 145–146, 70–80.
  • Xu C, XiweiXu a,n, FuchuDai b, ArunK. Saraf, 2012c. Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in China. Computers & Geosciences 46, 317–329.
  • Yalcin, A., 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena 72, 1–12.
  • Yalcin, A, Reis, S, Aydinoglu, AA,. Yomralioglu, T, .2011. A GIS - based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey.Geomorphology,Vol 85.PP 274-287.
  • Yao a, X., L.G. Tham b, F.C. Dai, 2008, Landslide susceptibility mapping based on Support Vector Machine: A case study on natural slopes of Hong Kong, China, Geomorphology 101,572–582.