تحلیل تاثیر تغییرات دوره‌ای خطوط ساحلی در گسترش نمکزارهای حاشیه‌ دریاچه ارومیه با استفاده از تصاویر ماهواره‌ای لندست

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه جغرافیای طبیعی، دانشکده جغرافیا، دانشگاه تهران

2 گروه سنجش از دور، دانشکده جغرافیا، دانشگاه تهران

3 گروه جغرافیای طبیعی، دانشکده جغرافیا، دانشگاه تهران

چکیده

به دلیل ماهیت دینامیکی خطوط ساحلی تهیه نقشه این مناطق و میزان تغییرات آن جهت برنامه­ریزی و دستیابی به توسعه پایدار امری بسیار ضروری می­باشد. بنابراین هدف از این پژوهش بررسی تغییرات خطوط ساحلی و نمکزار دریاچه ارومیه با استفاده از داده­های سنجش از دور ماهواره لندست بین سال­های 1976 تا 2015 می­باشد. از داده­های ترازسنجی ماهواره­ای از سال 1371 تا 1389 برای بررسی نوسانات سطح تراز آب دریاچه استفاده شده است که بر اساس آن تراز آب دریاچه حدود 8 متر افت داشته است. برای استخراج خطوط ساحلی از شاخص NDWI با دقت کلی 97/0 و برای استخراج نمکزار از شاخص SI2 با دقت کلی 0.98 استفاده شده است. نتایج حاصل از این مطالعه نشان می­دهد مساحت قابل توجهی از سطح آب دریاچه ارومیه در  طول 39 سال مورد مطالعه به ویژه در دهه­ای اخیر کاهش یافته و بر مساحت نمکزار اطراف دریاچه افزوده شده است. به طوری که از مساحت5216،30 کیلومترمربع آب و 18/106 کیلومتر مربع تمکزار در سال 1976 به ترتیب به 12/1519 کیلومتر مربع و 50/3777 کیلومتر مربع در سال 2015 رسیده است. همچنین بیشترین تغییرات مساحت مربوط به نمکزار و خط ساحل به ترییب 45/1286 و 97/1310 کیلومترمربع مربوط به دوره زمانی 2006 تا 2011 می­باشد. قسمت­های جنوب شرقی و جنوب به دلیل عمق کم دارای بیشترین تغییرات می­باشند اما در جهت­های شمالی این­تغییرات کمتر بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of the impact of periodic changes of Coastlines in expanding the salty marsh of the margin of Uremia Lake Using the Landsat Satellite Images

نویسندگان [English]

  • saman nadizadeh 1
  • ata abdolahi 2
  • najmeh naysani 2
  • fatemeh moradipoor 3
1 university of tehran
2 university of Tehran
3 university of Tehran
چکیده [English]

Introduction
Of important geomorphological characteristics of Uremia Lake is instability coastline. The salinity Phenomenon and Genesis crust of salt in the coastal lands is of the manifestations of this is the use, season. Monitoring the coastal areas and Extraction the water level changes in, different time, considered as fundamental research, because nature of coastline is dynamic and the management of such Sensitive ecological environments needs to earn detailed information in Different time intervals. For this purpose, Remote Sensing Technology has unique application uses information from these phenomena. Because multispectral satellite images have benefits and advantages that availability and this Digital interpretation is their most important. The overall objective of this study, was to evaluate the processes The governing on Dry environment and the hydrodynamic evaluate of lake in determining lake shoreline changes using the Landsat satellite images MSS, TM5, ETM + 7 and OLI in period of 39 years (1976- 2015) and then is evaluate the effect these changes on amount of salt deposits around the lake.
Methodology
In this study, to investigate the changes in Coastline and salt marsh Uremia Lake is used of Landsat satellite images (MSS-TM5-ETM + -OIL) that have been downloaded of USGS. To prepare satellite images in during processing, have been done pre-processing steps down: geometric correction, atmospheric correction, mosaic and Resample. Considering the importance of accuracy geometric correction on accuracy of the results of detection of changes Because of pixel by pixel comparison of satellite images together, these images must have coincided perfectly geometrically. So images using the 1:25000 Topographic Maps With the image registration to map method in WGS84 coordinate system and projection UTM Zone 38 with RMSE errors less than 5.0 were corrected. Initially the digital value of each pixel (DN) was Conversion to the Spectral radiation in sensor (Radiance) and then obtained Radiance was Conversion to reflection on the sensor (reflectivity), for atmospheric correction has been used of FLAASH method. After performing these steps, because this area is not within a Landsat image, for coverage of the full study area were mosaic images of each year. Finally all of images were re-sampling with method nearest neighbor. In this study, is used of six Salinity Index (NDSI, SI1, SI2, SI3, SI9, SI14). In order to changes evaluate Water Levels Uremia Lake do this in the period of 1976 to 2015 the water level in each image extracted from each image individually. To, various indices including normalized indices water, the normalized index humidity, corrected water normalized index, the index water ratio, normalized vegetation index, is used the index automatic extraction of water. After applying of indices on images, accuracy of the results of the index using the samples point that Lifted from the Google Earth was assessed. Eventually has been selected Suitable index for extract the shoreline and salt marsh and in in order to the separate of shoreline and salt marsh desired using the Model Maker extension in the ERDAS software was binary by taking considering threshold. Then been done with convert raster to vector maps and analyzes of Intended changes in the GIS10.3 software.
Discussion & Results
According to obtained results for the study area NDWI index is the strongest index for Water extraction, So that properly extracted 191 water sample point and of 218 sample points of salinity have put Only 7 samples in Water class. To extract Salt marsh strongest indicator, is the SI2 so that 214 sample points of salinity extracted correctly and of 195 samples points of water, only 12 samples out of put in salinity class and The weakest index, is NDSI indicator. According to the analysis of satellite images surface area of ​​Lake Uremia is reducing and the salt marsh is increase. So that the water level of the lake and salt marsh reached respectively of ​​5216.30 and 106.18 square kilometers in 1976 to 1519.12 and 3777.50 square kilometers in 2015. The results of surveys show that have area of water the negative trend and salt marsh have increased trend. So that the water level Declined 72.76 square kilometers between the years of 1976 to 1985 to 1262.03 square kilometers between the years of 2011 to 2015 but Area of salt marsh have increasing trend so that increased the 59.53 square kilometer between the years of 1976 to 1985 to 1247.82 square kilometers between years of 2011 to 2015. According to the extraction of shoreline using the satellite imaging greatest change has happened in the direction of East and Southeast (estuary of river Permanent and  full water of Zarinehrood) lake.
Conclusion
the main objective of this research because of the importance and special Status Lake in Ecosystems, is detect of changes of shoreline and salt marsh Uremia Lake during the period of 39 years. Check fluctuations level of lake using the data of satellite Level gauge of 1992 to 2018 showed that level of the lake has about 8 meters dropped. Results of the accuracy of the Accuracy of various indices for extract the shores of Lake Uremia Revealed that The strongest and the weakest index respectively, NDWI and NDMI index and The strongest and the weakest index for extract of salt marsh is SI2 and NDSI index. Analysis of satellite images shows that area of ​​the lake water and salt marsh respectively reached from 5216.30 and 106.18 square kilometers in 1976 to 1519.12 and 3777.50 square kilometers in 2015. These results it shows reduction of 70.87 percent area of Water Lake and increase in 3457.63 percent of the land of salt marsh of ​​ the study area during the past 39 years. Most of changes of area are related to ​​salt marsh and shoreline respectively 1286.45 and 1310.97 square kilometers Related to the period 2006 to 2011. Comparison of changes the coastline and depth of the lake showed that greatest of changes in parts of southeast and south due to the shallow depth of these Regions happened.

کلیدواژه‌ها [English]

  • changes of the coastline
  • changes of salt marsh
  • Uremia Lake
  • Remote Sensing
  • GIS
##احمدی، محمود، رامشت، محمدحسین، درفشی، خه­بات، 1393، بررسی روند تغییرات خظ ساحلی با استفاده از تکنیک­های سنجش از دور و سیستم اطلاعات جغرافیایی، مطالعه موردی: ساحل شهرستان بندر دیر، خلیج فارس، مجله جغرافیا و برنامه­ریزی محیطی، شماره3، 74-63.
##اصغری زمانی، اکبر، ۱۳۹۲، ارزیابی تغییرات سطح دریاچه ارومیه به عنوان چالش عمیق زیست­محیطی فراروی منطقه شمال­غرب ایران، فصلنامه­ی علمی- پژوهشی فضای جغرافیایی، سال سیزدهم، شماره ۴۱، صص ۹۱-۷۷.
##جداری عیوضی، جمشید، 1386، ژئومورفولوژی ایران، انتشارات دانشگاه پیام نور، چاپ هشتم، ص 106.
##خادمی، فاطمه، پیرخراطی، حسین، شاه­کرمی، سجاد، ۱۳۹۳، مطالعه روند افزایش خاک­های شور اطراف دریاچه ارومیه با استفاده از GIS و RS، زمین­شناسی مهندسی و محیط­زیست، سال بیست و چهارم، شماره 94، صص ۹۸-۹۳.
##درویشی خاتونی، جواد، محمدی، علی، 1390، گزارش لیمنولوژی و پالئو لیمنولوژی دریاچه ارومیه فاز I: اقلیم­شناسی، زمین­شناسی و هیدولوژی، سازمان زمین­شناسی کشور، صص 87-1.
##دلاور، مجید، ۱۳۸۷، شبیه سازی، تحلیل حساسیت و عدم قطعیت تغییرات تراز آب دریاچه ارومیه نسبت به مؤلفه های بیلان آبی آن، مجله هیدرولیک، سال سوم، شماره ۱، صص ۴۵-۵۵.
##رسولی، علی­اکبر، عباسیان، شیرزاد، جهانبخش، سعید، ۱۳۸۷، پایش نوسان­های سطح اب دریاچه­ی ارومیه با پردازش. فصلنامه مدرس علوم انسانی، دوره 12، شماره 2، صص ۷۱-۵۳.

##شایان، سیاوش، یمانی، مجتبی، خلیلی، یاسر، ۱۳۹۱، آشکارسازی تغییرات خطوط ساحلی شمال کشور با استفاده ازتکنیک­های GIS,RS  مطالعه موردی خلیج گرگان، اولین همایش بین المللی بحران های زیست محیطی ایران و راهکارهای بهبود آن. جزیره کیش، دانشگاه آزاد اسلامی واحد علوم و تحقیقات اهواز، http://www.civilica.com/Paper.

##علایی طالقانی، محمود، 1386، ژئومورفولوژی ایران، نشر قومس، چاپ چهارم، ص ۳۸۸.
##لرستانی، قاسم، ۱۳۹۴، بررسی تغییرات خط ساحلی با استفاده از روش پلی گون تغییرات محدودۀ موردمطالعه : قاعده دلتای سفیدرود، مجله پژوهش­های ژئومورفولوژی کمی، دروه 4، شماره 3، صص 180- 168.
##لک، راضیه، درویشی خاتونی، جواد، محمدی، علی، 1390، مطالعات پالئولیمنولوژی و علل کاهش ناگهانی تراز آب دریاچه ارومیه، فصلنامه زمین شناسی کاربردی، شمار4، 358-343.
##موحددانش، علی­اصغر، ۱۳۸۷، هیدرولوژی آب­های سطحی ایران، انتشارات سمت، چاپ پنجم، ص ۳۷۸.
##هاشمی، مختار، 1387، مروری بر وضعیت منابع آب حوضه آبریز دریاچه ارومیه، سازمان حفاظت محیط زیست.
##Abbas, A., Khan, S., Hussain, N., Hanjra, M. A., and Akbar, S., 2013, Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Physics and Chemistry of the Earth, Parts A/B/C, 55, pp. 43-52.
##Alesheikh, A. A., Ghorbanali, A., and Nouri, N., 2007, Coastline change detection using remote sensing, International Journal of Environmental Science & Technology, 4(1), pp. 61-66.
##Alesheikh, A. A., Ghorbanali, A., and Talebzadeh, A., 2004, Generation the coastline change map for Urmia Lake by TM and ETM+ imagery. In Map Asia Conference, Beijing, China.
##Bannari, A., Guedon, A. M., El‐Harti, A., Cherkaoui, F. Z., and El-Ghmari, A., 2008, Characterization of Slightly and Moderately Saline and Sodic Soils in Irrigated Agricultural Land using Simulated Data of Advanced Land Imaging (EO-1) Sensor, Communications in Soil Science and Plant Analysis, 39(19-20), pp. 2795-2811.
##Ding, H., Wang R. C., Wu, J. P., Zhou, B., Shi, Z., and Ding L. X., 2007, Quantifying land use change in Zhejiang coastal region, China using multi- temporal Landsa TM/ETM+ images. Pedosphere, No. 17, pp. 712-720.
##Elnaggar, A. A., and Noller, J. S., 2009, Application of remote-sensing data and decision-tree analysis to mapping salt-affected soils over large areas, Remote Sensing, 2(1), pp. 151-165.
##Esmaeili Dahesht, L., Negarestan, H., Eimanifar, A., Mohebbi, F., and Ahmadi, R., 2010, The fluctuations of physicochemical factors and phytoplankton populations of Urmia Lake, Iran, IranianJournal of Fisheries Sciences, No. 9(3), pp. 368-381.
##Jaafari, S., Shabani, A. A., and Danehkar, A., 2013, Investigation of coastline change of the Urmia Lake using remote sensing and GIS (1990-2012), International Journal of Aquatic Biology, 1(5), pp. 215-220.
##Ji, L., Zhang, L., and Wylie, B., 2009, Analysis of dynamic thresholds for the normalized difference water index, Photogrammetric Engineering & Remote Sensing, 75(11), pp. 1307-1317.
##Kaichang, D., Ruijin, M., Jue, W. and Ron, L., 2004, Coastal Mapping and Change Detection Using HighResolution IKONOS Satellite Imagery. Japan: Ohio.
##Kappa, M. Shawan, A., and Erasmi, S., 2005, Remote sensing based classification of salt affected soils as an indicator for landscape degradation in the south of Aleppo, Syria, in UN convention to combat desertification,Trier, Germany.
##Karimi, N., and Mobasheri, M. R., 2011, Shoreline change analysis of Urmia Lake using multi-temporal satellite images. In Eighteenth National Conference on Geomatics, Iran, Tehran, pp. 88-96.
##Katawatin, R., and Kotrapat, W., 2005, Use of LANDSAT-7 ETM+ with ancillary data for soil salinity mapping in Northeast Thailand. In Microtechnologies for the New Millennium 2005, International Society for Optics and Photonics, pp. 708-716.
##Kavian, A., Fathollah-Nejad, Y., Habib-nejad, M. and Soleimani, K., 2011, Modeling Seasonal Rainfall Erosive on a Regional scale: A case Study from Northeastern Iran, Int. J. Environ. Res.. Vol. 5. No. 4. pp. 939-950.
##Khan, N. M., Rastoskuev, V. V., Shalina, E. V., and Sato, Y., 2001, Mapping salt-affected soils using remote sensing indicators—a simple approach with the use of GIS IDRISI. In 22nd Asian Conference on Remote Sensing (Vol. 5, p. 9).
##McFeeters, S. K., 1996, The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features, International journal of remote sensing, 17(7), pp. 1425-1432.
Moore, L. J., 2000, Shoreline mapping techniques. Journal of Coastal Research, 111-124.
##Qudah, O., and Harahsheh, H., 1994, Recession of Dead Sea Through the Satellite Images, Royal Jordanian Geographic Centre Amman- Jordan.
##Rokni, K., Ahmad, A., Selamat, A., and Hazini, S., 2014, Water feature extraction and change detection using multitemporal Landsat imagery, Remote Sensing, 6(5), pp. 4173-4189.
##Roshan, G.R., Mohammadi, H., Nasrabadi, T., Hoveidi, H. and Baghvand, A., 2007, The Role of Climate Study in Analyzing Flood Forming Potential of Water Basins. International Journal of Environmental Research, Vol.1. No. 3. pp. 231-236.
##Schofield, C. S., 1940, Salt balance in irrigated areas, J. Agr. Res. 61, pp. 17-39.
##Singh, A., 1989, Digital change detection techniques using remotely sensed data, Int J. R. S. Vol. 10, No 6.
##Schroeder, T. A., Cohen, W. B., Song, C., Canty, M. J., and Yang, Z., 2006, Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon. Remote sensing of environment, 103(1), pp. 16-26.
##Sisay, A., 2016, Remote Sensing Based Water Surface Extraction and Change Detection in the Central Rift Valley Region of Ethiopia. American Journal of Geographic Information System, 5(2), pp. 33-39.
##Stephen A. K., 2002, A remote sensing and GIS Study of Lont-Term water mass balance lake Jackson, College of Enegineering Science Technology & Agriculture. Florda, U.S.A.
Tucker, C., 1979, Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment. Vol. 8. pp. 127-150.
##Tourian, M. J., Elmi, O., Chen, Q., Devaraju, B., Roohi, Sh., and Sneeuw, N., 2015, A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran, Remote Sensing of Environment, No. 156, pp. 349-360.
##US Geological Survey. Using the USGS Spectral Viewer. Available on http://landsat.usgs.gov/instructions.php [accesses date: August 4, 2015].
##Van, T. T., and Binh, T. T., 2008, Shoreline change detection to serve sustainable management of coastal zone in Cuu Long Estuary, In International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences (Vol. 1).
##Zăvoianu, F., Caramizoiub, A., and Badeaa, D., 2004, Study and Accuracy Assessment of Remote Sensing Data for Environmental Change Detection in Romanian Coastal Zone of the Black Sea, In Proceeding of ISPRS, pp. 778-783.