اندازه گیری میزان جابجایی سطح زمین ناشی از زلزله 1383 داهوئیه (زرند) استان کرمان و شناسایی گسل عامل آن با استفاده از تکنیک تداخل سنجی راداری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه جغرافیا و برنامه ریزی شهری دانشگاه شهید باهنر کرمان.

2 دانشگاه شهید باهنر کرمان

چکیده

در تاریخ 4 اسفند 1383 زمین لرزه ای به بزرگی 4/6 ریشتر شرق شهر زرند در استان کرمان را لرزاند. در ابتدا عامل این زلزله گسل کوهبنان پنداشته شد، ولیکن مطالعات بیشتر نشان می­دهد که یکی از گسله­های فرعی باعث این زلزله بوده است. در این تحقیق بر آن شدیم تا با استفاده از تصاویر راداری به بررسی و مدل سازی میزان تغییرات و جابجایی­های رخداده در سطح زمین بر اثر این زلزله پرداخته و گسله عامل زمین لرزه را شناسایی کنیم. بدین منظور دو تصویر راداری ASAR از ماهواره ENVISAT یکی مربوط به قبل و یکی مربوط به بعد از تاریخ رخداد زلزله به سازمان فضایی اروپا سفارش و در اختیار قرار گرفت. ابتدا با اعمال فیلتر خطاهای احتمالی از جمله خطاهای اسپکل و نویز، را رفع نموده و سپس با انجام عملیات رفع ابهام فاز عملیات تهیه نقشه جابجایی انجام می­گیرد. آنالیز تداخل سنجی بر روی تصویر بالارو ماهواره Envisat نشان می­دهد که بر اثر شدت ناشی از زلزله منطقه­ای در بخش شمالی بلافصل کانون سطحی زلزله به مساحت 100 کیلومتر مربع دچار بالا آمدگی شده و حداکثر میزان برازش آن به 34 سانتی متر نیز می­رسد. همچنین محدوده­ای در حدود 150 کیلومتر مربع در بخش جنوبی کانون سطحی، به میزان 24 سانتیمتر دچار فرو افتادگی شده است. بر اساس نتایج به دست آمده گسل مسبب زلزله، گسلی با روند شرقی- غربی با  مولفه راندگی و طول 20 کیلومتر می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Measurement of Surface Displacement Caused by the 2004 Dahuieh (Zarand) Earthquake in Kerman Province and Identification of the Operating Fault using the Radar Interferometry Method

نویسندگان [English]

  • ali mehrabi 1
  • mohsen porkhosravani 2
1 shahid bahonar kerman
2 shahid bahonar kerman
چکیده [English]

Introduction
The use of satellite imagery processing to fault lines extraction and faults identification is very common (Yassaghi, 2006: 35; Mehrabi et al. 2016: 45). However, the use of radar imagery in the field of faults is an emerging phenomenon, and so far, less work has been done. The radar images, in addition to measuring the intensity of the signal, also have phase information, therefore, that can be used in fault studies and earthquakes with using phase information and interferometry technique (Wright et al. 1999: 213; Simons et al. 2002: 145; Qu et al. 2017: 78). The subject of this study is to Measurement of surface displacement caused by the 2004 Dahuieh (Zarand) earthquake in Kerman province and identification of the operating fault using the radar interferometry method.
Materials and Methods
Initially, the focal mechanisms of earthquake information in 2004 were obtained from the site of the International Institute of Earthquake Engineering and seismology (IIEES). Then, two ASAR radar images of ENVISAT satellite were ordered from the ESA, one related to before the earthquake, and one related to after the earthquake event. The image that is related to before the earthquake is called the master image and the image associated with it later is a slave image. Also, a topographic map of 25000/1 was used to provide a digital elevation model (DEM). The processes and interferometric techniques were made using the Envi software via the Sarscape 4.3 plugin.
Results & Discussion
Two ASAR radar images, due to the fact that one was taken before the earthquake and one after the earthquake, can show the changes and effects of the earthquake on the surface as a phase of displacement. As shown in Fig. 4, in the image of the interferometric map that created at the earthquake surface center, numbers of fringes were created. Since the used satellite (Envisat) works in the C band, and each fringe obtained is 2.2 λ equal to 8.2 centimeters, the amount of displacement in the direction of the satellite's view is given by counting the number of fringes. Depending on how the color cycles are observed, the displacement rate also varies, so that if the cycle is yellow-blue-red, moving away from the radar and if the cycle is yellow-red-blue, the shift to the radar has occurred. As shown in Fig. 3, the northern and southern fringes both collide and disappear in both eastern and western parts, Just like the two poles of a magnetic field, if we connect these two poles with a single line, the upper part of the line has an uplift and its lower part has fallen, and almost the same line can be assumed as the fault of the earthquake. Before the interferometric map can provide a surface displacement, with the Goldstein filters must eliminate possible errors, such as the speckle and noise error. Since interferometric phase information is on the 2π scale, there is an ambiguous problem in calculating the correct number of phase currents, so that the interval to the phase observations must be added to obtain the distances. Eventually, the map of displacement created by performing and applying the filter and solving the ambiguity of the phase (Fig. 5). As shown in this figure, the difference in displacement exactly is started from the point of the earthquake surface. The north of this point has a high elevation, and the lower part is drooping. An area of 100 square kilometers has risen with maximum values of 34 cm. An area about 150 square kilometers in the southern part of surface focal has dropped by 24 cm. In Figure 6, the position of the aftershocks occurred one year after the earthquake was also included in the area. As seen, the post-shaking distribution follows the specified fault line. If the stone layers of the area are also examined (Fig. 7), evidence of the breakdown and displacement of these layers is observed exactly along the known fault line.
Conclution
An earthquake of seismic moment magnitude (Mw) 6.4 occurred in eastern Zarand city in Kerman province on February 22th, 2005. At first, the Kuhbanan fault was considered to be the cause of this earthquake. However, further studies of (Nemati and Gheitanchi, 2011: 3) show that One of the secondary faults that caused this earthquake. In this research, we decided to use radar images to investigate and model the changes and displacements occurring on Earth's surface due to this earthquake, and identify the caused fault. On the basis of ascending data, InSAR analysis reveals due to intensity of earthquake in the northern part of surface focal an area of 100 square kilometers has risen with maximum values of 34 cm. Also, an area about 150 square kilometers in the southern part of surface focal has dropped by 24 cm. Based on the results, the causative fault of the earthquake is the east-west fault with a reverse component and a length of 20 km.

کلیدواژه‌ها [English]

  • Radar interferometry
  • Displacement
  • Kuhbanan fault
  • Dahuieh earthquake
  • Envisat satellite images
##رهنمون فر، حیدری، قیطانچی، مریم، رامک، محمد رضا، 1385، تعیین جابه جایی و بزرگی زلزله سال 1382 بم در جنوب شرقی ایران با استفاده از داده های ماهواره با روش تداخل سنجی راداری، مجلة فیزیک زمین و فضا، جلد 32 ، شماره 2، صص. 124-117.
 ##شکرزاده، سمانه، وثوقی، بهزاد، آمیغ­پی، معصومه، 1393، بررسی مکانیزم­های شرکت کننده در جابجایی­های بعد لرزه­ای، زلزلة 1382 بم ایران با استفاده از تصاویر راداری، مجله علمی- پژوهشی رادار، سال دوم، شماره2، صص. 28- 21. 
##ملکی، مختارزاده، آبکار، ولدان زوج، غفوری، رضا، مهدی، علی اکبر، محمد جواد، علی، 1393، تهیه نقشه زمین شناسی شکستگی ها و خطواره ها با استفاده از پردازش تصاویر رادار روزنه ترکیبی (SAR) مطالعه موردی: تصویر منطقه کلات نادری، مجله علمی – پژوهشی رادار، سال 2، شماره 1، صص. 28-19.
##مهرابی، داستانپور، رادفر، وزیری، درخشانی، علی، محمد، شهباز، محمد رضا ، رضا ، 1394، شناسایی خطواره­های گسلی کمربند چین­خورده- تراستی زاگرس بر اساس تفسیر تصاویر ماهواره­ای و تعیین ارتباط آنها با موقعیت گنبدهای نمکی رخنمون یافته سری هرمز با استفاده از تحلیل های GIS، مجله علوم زمین، سال بیست و چهارم، شماره 96 ، صص. 31-13.
##Amarjargal, S., Kato, T., Furuya, M., 2013. Surface deformations from moderate-sized earthquakes in Mongolia observed by InSAR. Earth, Planets and Space 65 (7), pp.713-723.
##Ambraseys, M. and Melville, C. P., 1982. A History of Persian Earthquakes [M]. Londsn: Cambridge University Press, 219,
##Burgmann, R. Rosen, p. and Fielding, E., 2000. Synthetic Aperture Radar interferometry to measure Earth’s surface topography and its deformation, Annu. Rev. Earth. Planet. Sci., 28, pp. 169– 209.
##Cigna, F. Osmanoğlu, B. Cano, E. Dixon, T. Olivera, J. Garduño-Monroy, V. and DeMets, C., 2012. Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico. Remote Sensing of Environment, 25(3), pp. 146–161.
 ##Gabriel, A. K., Goldstein, R. M., and Zebker, H. A.,1989. Mapping small elevation changes over large areas: Differential radar interferometry, J. Geophys. Res., 94(B7), pp. 9183-9191.
##Livio, F., Serva, L., Gürpinar, A., 2017. Locating distributed faulting: Contributions from InSAR imaging to Probabilistic Fault Displacement Hazard Analysis (PFDHA). Quaternary International 451, pp. 223e233.
##Nakamura, T., Suzuki, S., Matsushima, T., Ito, Y., Hosseini, S.K., Gandomi, A.J., Sadeghi, H., Maleki, M., Aghda, S.M.F., 2004. Source fault structure of the 2003 Bam earthquake, southeastern Iran, inferred from the aftershock distribution and its relation to the heavily damaged area: existence of the Arg-e-Bam fault proposed. Website: http://www.gaea.kyushu-u.ac.jp/research/iran2004/paper/GRL2004.html.
##Nemati, M. and Gheitanchi, M. R., 2011. Analysis of 2005 Dahuieh (Zarand) aftershock sequences in Kerman province, southeast Iran. Journal of the Earth & Space Physics. 37(1), Pp. 1-9.
##Qu, C., Zuo, R., Shan, X., Hu, J-c., Zhang, G., 2017.  Coseismic deformation of the 2016 Taiwan Mw6.3 earthquake using InSAR data and source slip inversion, Journal of Asian Earth Sciences doi: http:// dx.doi.org/10.1016/j.jseaes.2017.08.027.
##Simons, M., Fialko, Y., Rivera L., 2002. Coseismic deformation from the 1999 Mw 7.1 Hector Mine, California earthquake as inferred from InSAR and GPS observations, Bull. Seismol. Soc. Am., 92, pp. 1390– 1402.
##Stramondo, S.M. Moro, Tolomei, C., Cinti, F.R., Doumaz, F., 2005. InSAR surface displacement field and fault modeling for the Bam earthquake (southeastern Iran) Journal of Geodynamics, 40 (23), pp.347–353.
##Taymaz, T., Wright, T.J., Yolsal, S., Tan, O., Fielding, E., Seyitoglu, G., 2007. Source characteristics of the 6 June 2000 OrtaeÇankırı (central Turkey) earthquake: a synthesis of seismological, geological and geodetic (InSAR) observations, and internal deformation of the Anatolian plate. Geological Society, London, Special Publications 291 (1), pp. 259e290.
##Wright, T.J., Parsons, B.E., Jackson, J.A., Haynes, M., Fielding, E.J., England, P.C. & Clarke, P.J., 1999. Source parameters of the 1 October 1995 Dinar (Turkey) earthquake from SAR interferometry and seismic body wave modeling, Earth planet. Sci. Lett., 172, 23–37.
##Wright, T. J., Z. Lu, and Wicks, C., 2004. Constraining the slip distribution and fault geometry of the Mw 7.9, 3 November 3 2002, Denali Fault earthquake with InSAR and GPS, Bull. Seismol. Soc. Am., 94(6B), PP. S175– S189.
##Yassaghi, A., 2006. Integration of landsat imagery interpretation and geomagnetic data on verification of deep-seated transverse fault lineaments in SE Zagros, Iran, Int. J. of Remote Sensing, 56(12), PP.152-167.
##Ye, X. (2005). Bam earthquake: Surface deformation measurement using radar interferometry, ACTA SEISMOLOGICA SINCA. 18(24), PP. 451-459.