ارزیابی وضعیت سیل‌خیزی و سیل‌گیری حوضه آبریز لیقوان‌چای با استفاده از مدل ترکیبی فرآیند تحلیل‌شبکه و منطق‌فازی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه جغرافیای طبیعی(ژئومورفولوژی)، دانشگاه محقق اردبیلی

چکیده

امروزه سیل به عنوان یکی از مهم­ترین مخاطرات محیطی شناخته شده در طبیعت است. کشور ایران به دلیل برخورداری از شرایط طبیعی مساعد برای سیل­خیزی در زمره کشورهای حادثه خیز از نظر وقوع این مخاطره است. هدف اصلی این پژوهش تعیین پهنه­های سیل­خیز و سیل­گیر حوضه لیقوان­چای تبریز است. جهت انجام این کار از مدل ترکیبی فرآیند تحلیل شبکه و منطق فازی به همراه 12 پارامتر طبیعی استفاده شده است. بر اساس مدل فرآیند تحلیل شبکه برای سیل­خیزی، معیارهای شیب(187/0)، جنس سازند(125/0) و برای سیل­گیری نیز پارامترهای شیب(229/0)، انحنای پلان (2/0) بیشترین ضریب تأثیر را داشته­اند. بر اساس نتایج، بخش­های جنوبی حوضه با قرارگیری در پهنه­هایی با پتانسیل خیلی­زیاد و زیاد، به عنوان سیل­خیزترین بخش­های حوضه معرفی شده­اند. این مناطق به خاطر سنگ بستر آتشفشانی، نفوذپذیری پایین، شیب­زیاد، دریافت بارش­بیشتر و تراکم شبکه آبراهه بالا قابلیت تولید روآناب بالایی را دارا هستند و از این نظر در کلاس طبقات با پتانسیل خیلی­زیاد و زیاد قرار گرفته­اند. از نظر سیل­گیری نیمه­شمالی حوضه بیشترین پتانسیل سیل­گیری را دارد. این مناطق عمدتاً زمین­های اطراف رودخانه­های اصلی، زمین­های پست و هموار بخش خروجی حوضه را در بر می­گیرند. از نظر تقسیمات واحدهای اراضی این مناطق عمدتاً به عنوان زمین­هایی با پستی و بلندی کم و شیب نسبی کمتر از 10 درصد می­باشند که اغلب نواحی حاشیه­ای رودخانه­ها، تراس­های قدیمی و جدید را در بر می­گیرند. این مناطق با ویژگی­هایی همچون شیب­کم، ارتفاع نسبی پایین، فاصله کم از رودخانه و انحنای پلان و پروفیل مقعر مشخص شده­اند.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Assessing the status of the flooding and flood risk by using Analytical Network Process-fuzzy logic hybrid model(Case study: lighvan River Basin)

نویسندگان [English]

  • mousa abedini
  • ebrahim beheshti
چکیده [English]

Introduction
    Flood is largest and most important climate crisis that kills thousands of people every year. And causes many damages to human society and the environment. This phenomenon of the distant past has always been a fear in human society (Nasrin Nejad et all, 2014: 16). Flood is one of the three natural disasters and major events in Iran and to note that at least a year, a major flood occurred in the country. According to studies in each year number of 40 small and large floods occurs in parts of the country (Department of Planning And Strategic Supervision president, 2010). Today is considered Non-structural deal with floods in catchment. Accordingly, the first action that comes to reduce the threat of flooding is flood control in the upper basin (Abdi, 2006:200). One of the common methods in combating the floods is Identifying in terms of potential flooding in basin. zoning possibility of recognizing watershed Specifies in terms of the flood.
Several studies have been conducted in the field of flood inside and outside the country that among these can be noted in research conducted by Thilagavathi et all(2011), Ozturk et all(2013), nasrin Nejad et all (2014), eskandary nejad et all (2015) and etc. Determination of flooding and flood-prone zoning Lighvan River is the main objective of this research. Lighvan River originates from the northern slopes of Sahand and after passing through the Tabriz and Basmenj cities eventually pours into Urmia Lake.
 
2- Methodology
Determination of flooding and flood-prone zoning Lighvan River is the main objective of this research. To do so has been used a combination of two Analytical Network Process and fuzzy logic models and along with 12 environmental parameters.
 
Analytical Network Process
Analytical Network Process model is broad form of AHP model, Analytical Hierarchy Process is introduced by the Saaty (1980). The underlying assumption of this method is Existence of independent sub-criteria together (Saaty, 2006). Saaty In cases where this principle is violated, and structure of issue has become a network, introduces Analytical Network Process model (Amalnik et al, 2010:202). Analytical Network Process for each subject considers in the form of a network of criteria, sub-criteria and options that have been gathered together in clusters. This model has several steps, which are as follows: 1) build models and create a network structure 2) binary comparison and determine the priority vectors - create a unweight super matrix 4) Creating weighted super matrix 5) finally, create a Limit super matrix.
 
Fuzzy logic model       
Fuzzy logic model is a generalization of the classical set theory in mathematics, science, and every day is a new method to express uncertainty and ambiguity. Fuzzy sets are defined by membership functions. For each fuzzy set between zero and there is a lack of full membership and a full membership represents zero (Hosseini et al, 1390). Fuzzy modeling is done by using several operators. An important function of the fuzzy logic model can be fuzzy Algebraic multiplication operator (Fuzzy Product), sum Fuzzy (Fuzzy Sum) gamma phase and so on. This operator of multiplication by the algebraic sum of fuzzy based on the fuzzy relation (1) is defined.
Equation (1)                             
 
3– Discussion
The parameters used in the modeling, due to the nature of their were categorized in four clusters such as: hydroclimate, geomorphology, geology and land cover for potential zoning for the flooding and two clusters of geomorphology and hydroclimate for zoning. Continue on with taking the network connection between the clusters and the parameters, established network structure between the parameters. By forming network structure between the clusters and the parameters arrives stage implementation of Analytical Network Process model, the formation of super matrix's and paired comparison. Due to the existence of two goals in the research (flood and flooding potential zoning) and impact of different parameters in them, Analytical Network Process model was conducted for each of the goals individually and in view of Effect In the flooding and flood risk and their relative weights Was obtained to each other.
Based on Comparisons of currently criteria, slope (0.18), lithology (0.125), aspect (0.118) have highest impact factor in flooding and slope parameters (0.229), the plan curvature (0.2 ) and profile curvature (0.134) have the highest impact factor in the flood risk in the study basin.

According to this research results, the southern part of the basin have been introduced as the prone to flooding areas with classifying in zones with high and very high potential. This area due to volcanic bedrock, Low permeability, High slope, more rainfall and high drainage density Have the ability to produce high runoff And that is why  are located in these classes. In terms of flood risk the northern half of the basin's the greatest potential for flood risk. These areas mainly include land surrounding the main River, low and flat lands portion of the basin output. In terms of subdivisions land units these regions, mainly are known as the land with low roughness and relative slope less than 10% that included marginal areas of rivers, old and new terraces And have been characterized With features such as low slope, low relative height, low distance from river and the concave plan and profiles curvature.
 

کلیدواژه‌ها [English]

  • flooding potential
  • Zoning
  • ANP
  • Fuzzy logic
  • Lighvan River
##اسکندری نژاد،  فاطمه ، مرتضی اف اکتم ، موسی اف آرتوبلسکی(1394)، بررسی پتانسیل سیل‌خیزی حوضه نمرود و تأثیر آن بر ویژگی‌های اقتصادی– اجتماعی منطقه و ارائه راهکارهایی جهت مدیریت آن، پژوهش های ژئومورفولوژی کمی، دوره 4، شماره 1 ، صص 89-75
##جباری ایرج، قبادیان رسول، احمدی ملاوردی مجید(1396) رابطه بین شاخص LFH و پهنه های سیل در دوره بازگشت های مختلف (مطالعه موردی: رودخانه قره سو)، فضای جغرافیایی:   تابستان 1396 , دوره  17 , شماره58 ;  صص 207-191
##زبردست، اسفندیار(1389)، کاربرد فرآیند تحلیل شبکه­ای(ANP) در برنامه­ریزی شهری و منطقه­ای، نشریه هنرهای زیبا-معماری و شهرسازی، شماره 41، بهار 1389.
##عابدینی، موسی، اسمعلی عوری، اباذر، موسوی، معصومه و سوسن طولابی(1391)، برآورد دبی سیلابی با استفاده از مدل­های تجربی فولر جاستین، درمحیط Arc GIS (مطالعه موردی : حوضه شهری ایذه-خوزستان، همایش ملی انجمن ایرانی ژئومورفولوژی، 9 اسفند ، تهران-خانه اندیشمندان علوم انسانی.
##عابدینی، موسی و نسرین شاه­محمدی (1393) پهنه­بندی خطر سیلاب وقوع  سیلاب شهری با استفاده مدل های  WMS و Hegras  مطالعه موردی حوضه آبریز مشکین شهر. پایاننامه کارشناسی ارشد، گروه جغرافیای طبیعی دانشگاه محقق اردبیلی.
##عامری­عرب، علیرضا، پور­قاسمی، حمید رضا و کورش کیانی(1396)، پهنه­‏بندی حساسیت سیل‏گیری با استفاده از روش ترکیبی نوین تئوری بیزین‌ـ‌ فرایند تحلیل سلسله‌مراتبی (مطالعۀ موردی: حوضۀ آبریز نکا ـ استان مازندران)، شماره 2، تابستان، صص 447-462
 ##عبدی، پرویز،(1385)، بررسی پتانسیل سیل‌خیزی‌ حوضه زنجان رود با روش‌ scs و سیستم اطلاعات‌ جغرافیایی، کمیته ملی آبیاری و زهکشی، کارگاه‌ فنی همزیستی با سیلاب.
##عمل­نیک، محسن. انصاری­نژاد، ایوب. انصاری­نژاد، صمد. میری نرگسی، سینا(1389)، یافتن رابطه علی معلولی و رتبه­بندی عوامل بحرانی موفقیت و شکست پروژه­های پیاده­سازی سیستم­های اطلاعاتی به کمک ترکیب روش­های ANP و DEMATEL فازی گروهی. نشریه تخصصی مهندسی صنایع، دوره 44، شماره 2، مهر ماه، صص 212-195.
##کرم، امیر و فرزانه درخشان (1391)پهنه­بندی سیل­خیزی، برآورد سیلاب و ارزیابی کارایی کانال­های دفع آب­های سطحی در حوضه­های شهری (مطالعه موردی: حوضه آبشوران در کرمانشاه)، جغرافیای طبیعی: تابستان 1391, دوره 5 , شماره  16 ; از صفحه 37 تا صفحه 54 .
##معاونت برنامه­ریزی و نظارت راهبردی رئیس جمهور (دفتر مهندسی و معیارهای فنی آب و آبفا وزارت نیرو و دفترنظام فنی اجرایی، راهنمای برآورد رواناب در طراحی  شبکه­های آبیاری و زهکشی، نشریه شماره 915؛ 1388.
##موسوی، سیده معصومه، نگهبان سعید، رخشانی مقدم، حیدر و سید محمد حسین زاده(1395) ارزیابی و پهنه‌بندی خطر سیل‌خیزی با استفاده از منطق فازی TOPSIS در محیط GIS (مطالعه موردی: حوضه‌ی آبریز شهر باغملک)، شماره 10، صص 79-98
##نسرین­نژاد، نعمت­اله، رنگزن، کاظم، کلانتری، نصراله و عظیم صابری (1393) پهنه­بندی پتانسیل سیل­خیزی حوضه آبریز باغان با استفاده از روش تحلیل سلسله مراتبی فازی (FAHP)، سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی (کاربرد سنجش از دور و GISدر علوم منابع طبیعی ):  زمستان 1393 , دوره  5 , شماره  4 ; از صفحه 15 تا صفحه 34 .
##مددی، عقیل، بهشتی­جاوید، ابراهیم، تغییرات کاربری زمین و اثرات آن در سیل­خیزی(مطالعه موردی حوضه رودخانه بالخلو). تهران، همایش محیط زیست و انسان، بهمن 1391.
##ملکیان، آرش، افتادگان خوزانی، صغر و غدیر عشورنژاد (1391)، پهنه­بندی پتانسیل سیل­خیزی حوضه آبریز اخترآباد با استفاده از روش تحلیل سلسله مراتبی فازی، پژوهش‌های جغرافیای طبیعی» زمستان 1391 - شماره 82) (22 صفحه - از 131 تا 152).
##Duman, T.Y., Can, T., Gokceoglu, C., Nefeslioglu, H.A. and Sonmez, H. (2006), Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey, Environmental Geology, 51: 241-256.
##Fiorentino M. A, Salvatore Manfreda a, Vito Iacobellis (2007), Peak runoff contributing area as hydrological signature of the probability distribution of floods, Advances in Water Resources 30, p2123-2134.
##Garcia-Melon, Monica, Javier Ferris-Onate, Jeronimo Aznar-Bellver , Pablo Aragonés-Beltran, and Rocio Poveda, Farmland appraisal based on the analytic network process, Journal of Global Optimization , 2008, Volume 42, Issue 2, pp 143-155.
##Haq, M., Akhtar, M., Muhammad, S., Paras, S., Rahmatullah, J., 2012. Techniques of remote sensing and GIS for flood monitoring and damage assessment: a case study of Sindh province, Pakistan. Egypt. J. Rem. Sens. Space Sci. 15, 135–141.
##Kottegoda, N.T., Natale, L. and Raiteri, E. (2000). Statistical modelling of daily streamflows using rainfall input and curve number technique. Journal of Hydrology 234:170-186.
##Lee, H. et al. (2009). Selection of technology acquisition mode using the analytic network process, Mathematical and Computer Modeling, Vol. 49, pp. 1274-1282.
##Meyer V, Scheuer S, Haase D. 2009. A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany. Natural Hazards, 48(1): 17-39.
##Oztürk , Melih, Nadim K. Copty, Ali Kerem Saysel, Modeling the impact of land use change on the hydrology of a rural watershed, Journal of Hydrology, Volume 497, 8 August 2013, Pages 97–109.20013.
##Saaty, T. L. (1999). Fundamentals of the Analytic Network Process, Proceedings of ISAHP 1999, Kobe, Japan.
##Saaty, T.  (1980). the analytic hierarchy process: planning, priority setting, resource allocation. New York; London: McGraw-Hill International Book Co.
##Saaty, T.  (2006).  Decision  making  with  the  analytic  network  process:  economic,  political,  social  and technological applications with benefits, opportunities, costs and risks. New York: Springer.
##Stephan, R(2002), Hydrologic investigation by the U.S Geological survey following the 1996 and 1997 floods in the Upper Yellostone River, Montana American Recourses Association. Annual Montana Section Meeting. Section one p1-18.
##Qin Q-m, Tang H-m, Chen Hk. 2011. Zoning of highway flood-triggering environment for highway in Fuling District, Chongqing. In: 2011 International Conference on Photonics, 3Dimaging, and Visualization. International Society for Optics and Photonics, pp 820530-820530-820538.
##Thilagavathi, G. Tamilenthi. S. Ramu C. Baskaran R. (2011), Application of Gis in Flood Hazard Zonation Studies in Papanasam,Taluk, Thanjavur District, Tamilnadu, Advances in Applied Science Research, 2011, 2 (3):574-585.
##Zhi-HuaShia, Li-DingChen, Nu-FangFang, De-FuQin, Chong-FaCa. Research of the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China. Catena77 (2009)1–7. 2008.
##Wang ,Z., Lai, C.,  Chen, X.,  Bai, X., 2015, Flood hazard risk assessment model based on random forest, Journal of Hydrology 542 , September 2016.pp 1130-1141.
##Wije sekara, G.N.  A. Gupta, C. Valeo, J.-G. Hasbani, Y. Qiao, P. Delaney, D.J. Marceau , assessing the impact of future land-use changes on hydrological processes in the Elbow River watershed in southern Alberta, Canada, Journal of Hydrology, Volumes 412–413, 4 January 2012, Pages 220–232.2012.