ارزیابی زمین‌ساخت فعال نسبی کوه‌های گرین با استفاده از شاخص‌های مورفومتری و تحلیل الگوی فرکتالی (نهاوند، باختر ایران)

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشگاه بوعلی سینا

چکیده

هدف از این پژوهش ارزیابی شواهد زمین‌ساختی تأثیرگذار بر ژئومورفولوژی کنونی کوه‌های گرین با استفاده از شاخص‌های مورفومتری و تحلیل‌های فراکتالی می‌باشد. رودخانه‌ها و شبکه زهکشی ازجمله مهم‌ترین عوارضی هستند که نسبت به تغییرات زمین‌ساختی بسیار حساس می‌باشند. جهت بررسی تأثیرات گسل نهاوند بر ژئومورفولوژی شبکه زهکشی، ابتدا محدوده مورد مطالعه به 47 حوضه تقسیم گردید. سپس شاخص‌های کمی مورفومتری از قبیل شاخص گرادیان - طول رودخانه (SL)، شاخص عدم تقارن حوضه زهکشی (Af)، شاخص تقارن توپوگرافی عرضی (T) و شاخص سینوسیتی جبهه کوهستان (Smf) محاسبه شده است. به منظور تعیین میزان فعالیت زمین‌ساختی نسبی در منطقه مورد مطالعه، شاخص زمین‌ساخت فعال نسبی (Iat) محاسبه شده است. همچنین بعد فرکتالی در 6 پهنه در منطقه مورد مطالعه برای الگوی گسل‌ها و شبکه زهکشی منطقه به روش مربع‌شمار، نمودارهای Log – Log و استفاده از تحلیل‌های فرکتالی مربوطه محاسبه شده است. نتایج بدست آمده از بررسی شاخص‌های مورفومتری و ابعاد فرکتالی برای سیستم گسلی فعال و شبکه زهکشی در کوه‌های گرین نشان دهنده فعالیت بیشتر بخش مرکزی (در راستای کوه گرین) و بخش جنوبی منطقه (پهنه گسل نهاوند) نسبت به دیگر بخش‌های منطقه می‌باشد.‌ به طور کلی می‌توان بیان نمود که ژئومورفولوژی شبکه زهکشی منطقه مورد مطالعه از نیروهای فعال زمین‌ساختی تأثیر پذیرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of relative active tectonic of the Garin Mountain using morphometric indices and fractal model analysis (Nahavand, west Iran)

نویسندگان [English]

  • Reza Alipoor
  • Amir Hossein Sadr
  • Hossein Nazari Dabir
  • Sahar Ghamarian
چکیده [English]

Introduction
The recent studies about the geomorphology is more based on the systematic comparison of the features and deposits. It also focus on determination of the primary forms of features and identification of processes. Qualitative measurement includes examining the shape of the earth's surface. Quantitative measurements allow the comparison of different landforms and calculation of less-understood parameters and allow identification of specific features including the level of tectonic activity. Geomorphic evidence can be evaluated using quantitative and qualitative methods, which is the quantitatively assessment is known as morphometric method. The use of geomorphic indices is a common method for classification of the tectonic activity. In this research, assessment of the active tectonic structures on recent geomorphology of the Green Mountains have been studied using morphometric indices and also effects of the Nahavand fault zone on the drainage network of the Grin Mountain (south west of Nahavand) has been investigated.
Methodology
In this research, structural maps, drainage network map and digital elevation model (DEM) of the study area were prepared using topographic map of the Hamadan, geological maps of the Nahavand and Malayer and Landsat 7 satellite images. Then, the stream length-gradient index (SL), asymmetry factor index (Af), transverse topographic symmetry index (T) and mountain front sinuosity index (Smf) were calculated for 47 basin in the study area. Finally, the results of these indices were compared by analyzing of the fractal dimension of the study area.
Results and discussion
The drainage pattern of the study area have two main NW-SE and NE-SW trends. The value of the SL index varies from 962 to 50 in the region with high and low tectonic activity, respectively. The value of this index is increased along the faults trend of the region and intersection of the drainages with active structures. It can be proposed that the tectonic movements, especially uplift, have increased the gradient of the drainages. According to the results of the Af index, 17 basins is classified in class 1 (high activity), 16 basins in class 2 (moderate activity) and 14 basins in class 3 (low activity). The existence of active fault system in these regions can be attributed to this asymmetry and tilting. The values calculated from the T index are classified in the classes 1 and 2, which indicate the asymmetry of basins, especially in the central part and perpendicular to the Green Mountains. In 19 basins, the values of this index are classified in class 1, in 24 basins in class 2 and just in 2 basins in class 3. The mountain front of the study area were divided into 10 sections along the Garin Mountain, in order to assessment of the Smf index. Then, from the north to south, this index was calculated for different sections. Measured values of the Smf index for most part of the study area show values close to 1, indicating that the northern part of the Green Mountains have a higher relative activity. In this study, all indices were combined, in order to classification of the study area based on Iat index. For each basin, the mean values of the geomorphic indices (S/n) were calculated and classified into four classes of index of relative tectonic activity (Iat). Considering the final zoning map of the relative tectonic activity in the study area, it can be proposed that the basins of the central and southern part of the region have more relative tectonic activity. Also, fault and drainage network layers were mapped in the Arc GIS software and the fractal dimension was calculated for the study area by using the Box Counting method (the most common method for fractal analysis). Regarding the surface geomorphology, the study area was divided into 6 squares with dimensions of 16 km, in order to applying the Box Counting method. In the fractal study, the fault system of each square was evaluated separately and the fractal dimension was calculated for each square. Fractal dimensions of the drainage networks were calculated using aerial photos and satellite images similar to the faults map. The maximum and minimum fractal values of faults are 1.87 and 1.41, respectively. Also, the maximum and minimum fractal values of drainages are 1.66 and 1.27, respectively.
Conclusion
According to the final zoning map of the relative tectonic activity in the study area, it can be proposed that the central and southern basins of the study area have more relative tectonic activity, where the faults also have a high density in these basins. The activity of fault systems in these basins have played an important role in high rates of relative tectonic activity. Increasing the fractal dimension of the faults indicates less maturation and the activity of the study area. The major and active structures in the Nahavand fault zone in the southern part and along the Garin Mountains caused the uplift and tectonic activity in this part of the study area. 

کلیدواژه‌ها [English]

  • Tectonic
  • Morphometric Indices
  • fractal
  • Nahavand fault
  • Garin Mountain
  • آقاشاهی اردستانی، سمیه، 1385، لرزه‌زمین‌ساخت و توان لرزه‌ایی گسل زاهدان و اثر آن بر گستره شهر زاهدان، پایان‌نامه کارشناسی‌ارشد، دانشگاه سیستان و بلوچستان.
  • بهرامی، شهرام؛ معتمدی‌‌راد، محمد؛ اکبری، الهه، 1392، بررسی تأثیر تکتونیک در ویژگی‌های کمی شبکه زهکشی (مطالعه موردی: چهار حوضه زهکشی در شمال‌شرق کشور)، مطالعات جغرافیایی مناطق خشک، سال سوم، شماره 12، صص. 102-85.
  • پورکرمانی، محسن؛ معتمدی، حسین، 1381، روش‌های زمین‌شناسی ساختمانی، انتشارات دانشگاه شهید بهشتی تهران.
  • ثروتی، محمدرضا، 1371، ژئومورفولوژی ساختمانی و اقلیمی در منطقه کاشمر، مجموعه مقالات جغرافیایی جشن‌نامه دکتر محمد حسن گنجی، انتشارات گیتاشناسی، تهران.
  • چرچی، عباس؛ خطیب، محمد مهدی؛ مظفرخواه، محمد؛ برجسته، آرش، 1390، استفاده از تحلیل فرکتالی برای تعیین پویایی تکتونیک شمال منطقه لالی در شمال‌شرق خوزستان، مجله زمین‌شناسی کاربردی پیشرفته، دانشگاه شهید چمران اهواز، جلد1، شماره1، صص. 47-37.
  • رنگزن، کاظم؛ زرگرزاده، مرضیه؛ چرچی، عباس؛ آبشیرینی، احسان، 1386، کاربرد علوم سنجش از دور و GIS در پهنه‌بندی نئوتکتونیک کوه‌های زاگرس با استفاده از شاخص‌های ژئومورفیک، یازدهمین انجمن زمین‌شناسی ایران، دانشگاه فردوسی مشهد.
  • روستایی، شهرام؛ نیری، هادی، 1391، ارزیابی فعالیت‌های تکتونیکی با استفاده از نیمرخ طولی در حوضه آبریز رودخانه‌ی مهاباد، جغرافیا و برنامه‌ریزی، دوره 16، شماره، 36، صص. 164-145.
  • شهریاری، سعید؛ خطیب، محمد مهدی، 1376، تحلیل فرکتالی سیستم گسلی نهبندان، فصلنامه علوم زمین، سال ششم، شماره 23-24، صص. 39-32.
  • قنواتی، عزت‌الله؛ صفاکیش، فریده؛ مقصودی، یاسر، 1396، ارزیابی تکتونیک فعال در زیر حوضه‌های جراحی - زهره بر پایه تحلیل مورفوتکتونیکی و اثرهای آن بر میدان‌های نفتی حوضه مورد مطالعه، پژوهش‌های جغرافیای طبیعی، دوره 49، شماره 2، صص.240 -221.
  • گورابی، ابوالقاسم؛ نوحه‌گر، احمد، 1386، شواهد ژئومورفولوژیکی تکتونیک فعال حوضه آبخیز درکه، پژوهش‌های جغرافیایی، شماره 60، صص. 196-177.
  • مقصودی، مهران؛ جعفری‌اقدم، مریم؛ باقری سیدلشکری، سجاد؛ مینایی، مسعود، 1390، بررسی تکتونیک فعال حوضه آبخیز کفرآور با استفاده از شاخص‌های ژئومورفیک و شواهد ژئومورفولوژیکی، جغرافیا و توسعه، سال نهم، شماره 25، صص. 136-111.
  • یوسفی، مهدی؛ خطیب، محمد مهدی؛ غلامی، ابراهیم، موسومی، سید مرتضی.، 1392، ارزیابی پویایی گسل شکرآب (شمال بیرجند) بر مبنای شاخص‌های ریخت‌زمین‌ساختی، مجله پژوهش‌های دانش زمین، شماره 14، دانشگاه شهید بهشتی.
  • Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229, pp.211-238.
  • Alipoor, R., Poorkermani, M., Zare, M., El Hamdouni, R., 2011. Active tectonic assessment around Rudbar Lorestan dam site, High Zagros Belt (SW of Iran). Geomorphology, 128, pp.1–14.
  • Alipoor, R., Zare, M., Ghassemi, M.R., 2012. Inception of activity and slip rate on the Main Recent Fault of Zagros Mountains, Iran. Geomorphology, 175-176, pp.86–97.
  • Allen, M.B., Jackson, J., Walker, R., 2004. Late Cenozoic reorganization of the Arabia– Eurasia collision and comparison of the short-term and long-term deformation rates. Tectonics, 23.
     doi: 10.1029/2003TC001530.
  • Angulo-Brown, F., Ramirez-Guzman, A. H., Yepez, E., Rudoif-Nvarro, A., Paviamiller, C. G., 1998. Fractal Geometry and Seismicity in the Mexican Subduction Zone, Geofisica International, 37, pp.29–33.
  • Axen, G.J., Lam, P.J., Grove, M., Stockli, D.F., Hassanzadeh, J., 2001. Exhumation of the west‐central Alborz Mountains, Iran, Caspian subsidence, and collision‐related tectonics. Geology, 29, pp.559–562.
  • Berberian, M. and King, G.C.P., 1981. Toward a paleogeography and tectonic evolution of Iran, Canad. J. Earth Sci, 18, pp.210-265.
  • Berberian, M., 1976. Active Faulting and tectonics of Iran. Rep. Geol. Surv Iran. 40p.
  • Berberian, M., 1981. Contributions to the seismotectonics of Iran. Geodynamics Series, 3, pp.33-69.
  • Berberian, M., 1995. Master blind thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics, 241, pp.193–224.
  • Blanc, E.J.P., Allen, M.B., Inger, S., Hassani, H., 2003. Structural styles in the Zagros Simple Folded Zone. Iran. Journal of the Geological Society of London, 160, pp.401–412.
  • Bull, W.B. and McFadden, L.D., 1977. Tectonic geomorphology north and south of the Garlock fault, California, In: Doehring, D.O. (Ed.), Geomorphology in Arid Regions, Proceedings of the Eighth Annual Geomorphology Symposium, State University of New York, and Binghamton, pp.115-138.
  • Bull, W.B., 1978. Geomorphic tectonic classes of the south front of the San Gabriel Mountains, California, U.S. Geol. Survey, Contract Rep. 59 p.
  • Chen, Y.C., Sung, Q., Cheng, K.Y., 2003. Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology, 56, pp.109–137.
  • Ciccacci, S., Fredi, P., Lupia Palmieri, E., Pugliese, F., 1986. Indirect evaluation of erosion entity in drainage basins through geomorphic, climatic and hydrological parameters. International Geomorphology, 2, pp.33–48.
  • El Hamdouni, R., Irigaray, C., Fernandez, T., Chacan, J., Keller, E.A., 2008. Assessment of relative active tectonics, southwest border of Sierra Nevada (southern Spain). Geomorphology, 96, pp.150-173.
  • Guarnieri, P. and Pirrotta, C., 2008. The Response of Drainage Basins to the Late Quaternary Tectonics in the Sicilian Side of the Messina Strait (NE Sicily). Geomorphology, 95, pp.260-273.
  • Guest, B., 2004. The thermal, sedimentological and structural evolution of the central Alborz Mountains of northern Iran: implications for the Arabia–Eurasia continent–continent collision and collisional processes in general. Ph.D. Dissertation Thesis, University of California, Los Angeles, Los Angeles, 292 p.
  • Hack, J.T., 1973. Stream-profile analysis and stream-gradient index, U.S. Geological Survey Journal of Research, 1, pp.421– 429.
  • Hare, P.W. and Gardner, T.W., 1985. Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. In: Morisawa, M., Hack, J.T. (Eds.), Tectonic Geomorphology. Proceedings of the 15th Annual Binghamton Geomorphology Symposium. Allen and Unwin, Boston, MA, pp.123–134.
  • Hirata, T.,1989. Fractal Dimension of Fault Systems in Japan: Fractal Structure in Rock Fracture Geometry at Various Scales, Pure appl. Geophys, 131, pp.157–170.
  • Hossaini-Doust, J. and Mahdavi, M.A., 1992. Geological map of Nahavand quadrangle 5658: Geological Survey of Iran, scale 1:100,000, 1 sheet.
  • Idziak, A. and Temper, L., 1996. Fractal Dimension of Faults Network in the Upper Silesian Coal Basin (Poland): Preliminary Studies, Pure appl. Geophys, 147, pp.239–247.
  • Jafarian, M.B., Zamani, P., Soheili, M., 1997. Geological map of Malayer quadrangle 5758: Geologyical Survey of Iran, scale 1:100,000, 1 sheet.
  • Keller, E. A. and Pinter, N., 1996. Active tectonics: earthquakes, uplift, and landscape.by Prentice-Hall, Inc. Simon and Schuster/A Viacom Company Upper Saddle River, New Jersey, 7458, pp.121-145.
  • Keller, E.A. and Pinter, N., 2002a. Active Tectonics. Earthquakes, Uplift and Landscape, New Jersey: Prentice Hall.
  • Keller, E.A. and Pinter, N., 2002b. Active Tectonics: Earthquakes, Uplift, and Landscape. Prentice Hall, New Jersey.
  • Keller, E.A., Gurrola, L., Tierney, T.E., 1999. Geomorphic criteria to determine direction of lateral propagation of reverse faulting and folding, Geology, 27, pp.515–518.
  • Koop, W.J. and Stoneley, R., 1982. Subsidence history of the Middle East Zagros Basin, Permian to Recent. Philosophical Transactions of the Royal Society of London. Series A, 305, pp.149–168.
  • Li, Y., Yang, J., Tan, L., Duan, F., 1999. Impact of tectonics on alluvial landforms in Hexi corridor, Northwest China. Geomorphology, 28, pp.299-308.
  • McClay, K.R., Whitehouse, P.S., Dooley, M., Richards, M., 2004. 3D evolution of fold and thrust belts formed by oblique convergence. Marine and Petroleum Geology, 21, pp.857–877.
  • Mohajjel, M. and Fergusson, C. L. 2014. Jurassic to cenozoic tectonics of the zagros orogen in northwestern Iran. International Geology Review, 56(3), pp.263-287.
  • Mohajjel, M. and Rasouli A., 2014. Structural evidence for superposition of transtension on transpression in the Zagros collision zone: Main Recent Fault, Piranshahr area, NW Iran. J Struct Geol, 62, pp.65–79.
  • Mohajjel, M., Fergusson, C.L., Sahandi, M.R., 2003. Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan Zone, western Iran: Journal of Asian Earth Sciences, 21, pp.397–412.
  • Molin, P., Pazzaglia, F.J., Dramis, F., 2004. Geomorphic expression of active tectonics in a rapidly-deforming forearc, sila massif, Calabria, southern Italy. American Journal of Science, 304, pp.559–589.
  • Okubo, P. G., and Aki, K., 1987. Fractal Geometry in the San Andreas Fault System, J. Geophys, 92, pp.345–355.
  • Ramirez, M. and Herrera, M.T., 1998. Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt. Earth Surface Processes and Landforms, 23, pp.317-332.
  • Srinivasan, R., 1988. Present status of the Sargur Group of the Archaean Dharwar craton, south India; Indian J. Earth Sci, 16, pp.57-72.
  • Stewart, I.S. and Hankock, P. L., 1994. Neotectonics, in: Continental deformation (ed. Hancock, P.L), Oxford, Pergamon Press, pp.370-409.
  • Stocklin, J., 1968. Structural history and tectonic of Iran; a review, American Association of Petroleum Geologists Bulletin, 52, pp.1229–1258.
  • Stocklin, J., 1974. Possible ancient continental margin in Iran. In: Burk, C.A., Drake, C.L. (Eds.), the Geology of Continental Margins. Springer, Berlin, pp.873–887.
  • Talebian, M. and Jackson, J., 2002. Offset on the main recent fault of NW Iran and implications on the late Cenozoic tectonics of the Arabia–Eurasia collision zone. Geophysical Journal International, 150, pp.422–439.
  • Tchalenko, J.S. and Braud, J., 1974. Seismicity and structure of the Zagros [Iran] the Main Recent Fault between 33 and 35 N. Philosophical Transactions of the Royal Society of London, 277, pp.1–25.
  • Turcotte, D.L., 1992. Fractals and Chaos in Geology and Geophysics, Cambridge university Press, 398 p.
  • Wellman, H.W., 1966. Active wrench faults of Iran, Afghanistan and Pakistan. Geologische Rundschau, 55, pp.716–735.
  • Wells, S.G., Bullard, T.F., Menges, T.M., Drake, P.G., Karas, P.A., Kelson, K.I., Ritter, J.B., Wesling, J.R., 1988. Regional variations in tectonic geomorphology along segmented convergent plate boundary, Pacific coast of Costa Rica. Geomorphology, 1, pp.239–265.