بازسازی محیط و آب و هوای دیرینه در ارتفاعات چهل چشمه دیواندره کردستان در طول آخرین دوره حداکثر گسترش یخچالی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه محقق اردبیلی

2 دانشگاه تهران

چکیده

ارتفاعات چهل­ چشمه (چل­چه­مه) در دیواندره استان کردستان تعداد زیادی از شواهد یخچالی شامل سیرک­های یخچالی و یخرفت­های دوره­ی پلیئستوسن را در خود جای داده است. میزان ارتفاع خط تعادل در ارتفاعات چهل­چشمه به منظور بازسازی محیط­ و آب و هوای دیرینه در طول آخرین دوره­ی حداکثر گسترش یخچالی با استفاده از بررسی­ های میدانی­، تهیه­ی نقشه­ های ژئومورفولوژی بر مبنای نقشه­ی توپوگرافی 1:50000، استفاده از مدل رقومی ارتفاعی 5/12 متری و به کارگیری روش­های نسبت مساحت انباشتگی به مساحت کل،­ متوسط ارتفاع یخچال­ها (کروسکی) و روش نسبت تعادل مساحت ارتفاع محاسبه گردید. میزان ارتفاع خط تعادل در طول آخرین دوره حداکثر گسترش یخچالی در ارتفاعات چهل­چشمه حدود 2905 متر از سطح دریا برآورده شد. میزان ارتفاع خط تعادل کنونی با استفاده از روش لای و همکاران و استفاده از داده­های هواشناسی 4683 متر از سطح دریا برآورد گردید. با در نظر گرفتن میزان پایین آمدگی ارتفاع خط تعادل به میزان 1778 متر میزان متوسط کاهش دمای سالیانه در طول دوره­ی حداکثر گسترش یخچالی °5/11 بوده است. با مقایسه­ی میزان پایین آمدگی ارتفاع خط تعادل و میزان کاهش دمای محاسبه شده با دیگر مطالعات انجام شده در ایران و جهان حداکثر گسترش یخچال­ها در ارتفاعات چهل­چشمه منطبق با آخرین دوره­ی حداکثر گسترش یخچالی در حدود 5/26 الی 19 هزار سال قبل و تحت تاثیر شرایط آب و هوای سرد و خشک بوده است، همچنین در مقایسه با مطالعات رایت و همکاران در یخچال­های ارتفاعات کردستان میزان کاهش دما حدود 12 درجه سانتی­گراد و میزان پایین آمدگی ارتفاع خط بین 1200 - 1800 متر بوده است.

 

کلیدواژه‌ها


عنوان مقاله [English]

Reconstruction of the environment and paleoclimate in Chehel Cheshmeh Mountains Divandarreh, Kurdistan, during the Last Glacial Maximum.

نویسندگان [English]

  • Omid Rahimi 1
  • Fariba Esfandiary Darabad 1
  • Mehran Maghsoudi 2
چکیده [English]

Introduction
During the last Quaternary period, the earth is affected by environmental changes and extreme climate fluctuations (Kaser and Osmaston, 2002). Environmental and climate changes during the last glacial maximum period from 26.5 to 19 kyr BP (Clark et al., 2009) have affected the landforms and paleoenvironments. Determining the equilibrium-line altitude is the best tool for the reconstruction of paleoclimate and paleoenvironment during former glaciations (Benn and Ballantyne, 2005, Lukas and Bradwell, 2010, Hughes et al., 2010). The Equilibrium Line Altitude (ELA) is the average elevation where, over a one-year time interval, accumulation equals ablation so the mass balance at this line is zero (Cogley et al., 2011). The purpose of this study was to reconstruction paleoclimate and paleoenvironment conditions during the last glacial maximum period using geomorphological evidence such as glacial landforms, including glacial cirques, Accumulation Area Ratio (AAR), Area-Altitude Balance Ratio (AABR) and Mean glacier elevation (MGE) or Kurowski methods at Chehel Cheshmeh mountains of Divandareh in Kurdistan province.
Methodology
In this research, after the field investigation of Chehel Cheshmeh Mountains, the glacier cirques of the region were identified. Then the position of the two typical cirques, including the Shahneshin, Qholizolikha Cirques and the three cirques located in Masjedmirza Mountains, along with the location of the moraines, was determined by using GPS. The geomorphology of the glaciers was mapped using a topographic map (1: 50000) and GPS data in the Freehand 9.0.2 and ArcGIS 10.4.1 software. Then, using DEM (12.5 m) and geomorphologic maps prepared in ArcGIS 10.4.1 software, the equilibrium line altitudes in the glaciers of Chehel Cheshmeh Mountains were calculated using the methods of the Accumulation Area Ratio (AAR), Area-Altitude Balance Ratio (AABR) and Mean glacier elevation (MGE) or Kurowski (Pellitero et al., 2015). The method of Lai (2003) was used to estimate the present equilibrium-line altitude in Chehel Cheshmeh Mountains. In order to calculate the present equilibrium-line altitude, the temperature and precipitation data from the meteorological stations around the study area were used.
Discussion
Based on the mean glacier elevation method, the equilibrium-line altitude during the last glacial maximum in the Shahneshin  is 2812.5 (m.a.s.l), in Qolizolikha 3027.5 (m.a.s.l)  and in the Masjedmirza is 2868 (m.a.s.l). Based on the area-altitude balance ratio, the equilibrium-line altitude during the last glacial maximum in the Shahneshin  is 2827 (m.a.s.l), in Qolizolikha 3018 (m.a.s.l)  and in the Masjedmirza is 2869 (m.a.s.l). Using the method of Lai et al. (2003) and using the meteorological data, the present equilibrium-line altitude of the Zarineh station was 4735 m, Baneh station was 4680 m. Sanandaj station was 4633 m, the average of three stations located in the region of the study area was 4683 (m.a.s.l).
Conclusion
The equilibrium-line altitude during the last glacial maximum was calculated about 2905 (m.a.s.l) at the Chehel Cheshmeh Mountains. The present equilibrium-line altitude was estimated about 4683 (m.a.s.l) using Lai Method and the use of meteorological data. With Consideration of the equilibrium-line altitude lowering about 1778 meters, the mean annual temperature drop was around 11.5° during the last glacial maximum. Compared to other studies by Wright et al (1962, 2004) the temperature drop in the glacial mountains of Kurdistan 12 ° C, Bobek (1937) in the glacial mountains of Kurdistan 4 ° C, Bobek (1963) in the Alborz and Zagros Mountains from 4°C to 5°C, Krinsley (1970) in Playas and deserts in central Iran from 5°C to 8°C,  Frenzel et al (1992) in the Northern hemisphere from 10°C to 12°C, Seif (2015) in Oshtorankuh 9.8°C, Kuhle (2008) in the Kuh-i-Jupar 10.5°C, Yamani et al (2007) in the Karkas Mountains from 10°C to 12°C, and Jafari et al (1396) in the mountains of Ghorveh 8.8°C were observed. Also, according to previous studies, the rate of equilibrium-line altitude lowering  the glacial mountains of Kurdistan by Wright et al. (1962, 2004) between 1200 to 1800 m, Bobek (1937) in the glacial mountains of Kurdistan 700 m, Bobek (1963) in the Alborz and Zagros Mountains 600-800 m, Krinsley (1970) in Playas and deserts in central Iran more than 1,800, Seif (2015) in Oshtorankuh more than 1380 m, Kuhle (2008) in the Kuh-i-Jupar 1500 m are estimated. By comparing the equilibrium-line altitude lowering and the rate of reduction in the calculated temperature with other studies in Iran and the world, the last glacial maximum at Chehel Cheshmeh Mountains corresponds to the last glacial maximum about 26.5 to 19 kyr BP. It was affected by cold and dry climate conditions. Therefore, the use of glacier geomorphologic evidence and the equilibrium-line altitude are very suitable methods for the reconstruction of the environment and paleoclimate in Chehel Cheshmeh Mountains  Divandarreh, Kurdistan, during the last glacial maximum.
Keywords: The last glacial maximum (LGM), Equilibrium-line altitude (ELA), Area-Altitude Balance Ratio (AABR), Chehel Cheshmeh Mountains
 

کلیدواژه‌ها [English]

  • The last glacial maximum (LGM)
  • Equilibrium-line altitude (ELA)
  • Area-Altitude Balance Ratio (AABR)
  • Chehel Cheshmeh Mountains
  • ابراهیمی، بابک، سیف، عبدالله (1395). ارتفاع خط تعادل (TP-ELA و TPW-ELA) در ارتفاعات زاگرس، پژوهشهای دانش زمین، سال هفتم، شماره 28، ص 96-118.
  • جعفری، غلام­حسن، آوجی، مینا (1395). بررسی آثار برف­مرز دائمی یخچال­های کواترنری توده کوهستانی قروه، فصلنامه کواترنری ایران، دوره 2، شماره، 4، ص 379-391.
  • شاه­پسندزاده، م، (1385). نقشه زمین­شناسی 1:100000 باینچوب، سازمان زمین­شناسی ایران.
  • یمانی ، مجتبی، جداری عیوضی، جمشید، گورابی،  ابوالقاسم (1386). شواهد ژئومورفولوژیکی مرزهای یخچالی در دامنه های کرکس، مدرس علوم انسانی، دوره 11، شماره 1، ص 207-228.
  • یمانی، مجتبی، حمزه، زمانی (1395). تعیین ارتفاع خط تعادل (ELA) در دره هراز در آخرین دوره یخچالی، دوره 2، شماره، 4، ص 305-314.
    • Antoine, P., Bahain, J. J., Berillon, G., & Asgari Khaneghah, A. (2006). Tuf calcaire et séquence alluviale en contexte tectonique actif: la formation de Baliran (province du Mazandaran, Iran). Quaternaire. Revue de l'Association française pour l'étude du Quaternaire, 17 (4), 321-331.
    • Benn, D. I., & Ballantyne, C. K. (2005). Palaeoclimatic reconstruction from Loch Lomond Readvance glaciers in the West Drumochter Hills, Scotland. Journal of Quaternary Science, 20(6), 577-592.Benn, D. I., & Ballantyne, C. K. (2005). Palaeoclimatic reconstruction from Loch Lomond Readvance glaciers in the West Drumochter Hills, Scotland. Journal of Quaternary Science, 20(6), 577-592.
    • Benn, D. I., & Lehmkuhl, F. (2000). Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quaternary International, 65, 15-29.
    • Bobek, H. (1937). Die Rolle der Eiszeit in Nordwestiran. Borntraeger. 25, S. 130-183.
    • Bobek, H. (1963). Nature and implications of Quaternary climatic changes in Iran, in Changes of climate, Proceedings of Symposium on Changes of Climate with Special Reference to Arid Zones: Rome, 1961, UNESCO, p. 403-413.
    • Braithwaite, R. J., & Raper, S. C. B. (2009). Estimating equilibrium-line altitude (ELA) from glacier inventory data. Annals of Glaciology, 50(53), 127-132.
    • Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., ... & McCabe, A. M. (2009). The last glacial maximum. Science, 325(5941), 710-714.
    • Cogley, J. G., Hock, R., Rasmussen, L. A., Arendt, A. A., Bauder, A., Braithwaite, R. J., ... & Zemp, M. (2011). Glossary of glacier mass balance and related terms, IHP-VII technical documents in hydrology No. 86, IACS Contribution No. 2.
    • Desio, A. (1934). Appunti geografici e geologici sulla catena dello Zardeh Kuh in Persia. Memorie Geologiche e Geographiche di G. Dainelli, 4(13), 141-167.
    • Djamali, M., de Beaulieu, J. L., Shah-hosseini, M., Andrieu-Ponel, V., Ponel, P., Amini, A., ... & Brewer, S. (2008). A late Pleistocene long pollen record from Lake Urmia, NW Iran. Quaternary Research, 69(3), 413-420.
    • El-Moslimany, A. P. (1987). The late Pleistocene climates of the Lake Zeribar region (Kurdistan, western Iran) deduced from the ecology and pollen production of nonarboreal vegetation. Plant Ecology, 72(3), 131-139.
    • Fattahi, M., Walker, R., Hollingsworth, J., Bahroudi, A., Nazari, H., Talebian, M., & Stokes, S. (2006). Holocene slip-rate on the Sabzevar thrust fault, NE Iran, determined using optically stimulated luminescence (OSL). Earth and Planetary Science Letters, 245(3), 673-684.
    • Frechen, M., Kehl, M., Rolf, C., Sarvati, R., & Skowronek, A. (2009). Loess chronology of the Caspian lowland in northern Iran. Quaternary International, 198(1), 220-233.
    • Frenzel, B. (1992). Atlas of paleoclimates and paleoenvironments of the Northern Hemisphere. Geographical Research Institute, Hungarian Academy of SCiences, Budapest, Gustav Fischer Verlag, Stuttgart Jena New York.
    • Grunert, J., Carls, H. G., & Preu, C. (1978). Rezente Vergletscherungsspuren in zentraliranischen Hochgebirgen [The present-day glaciers of the central Iranian high mountains]: Eiszeitalter und Gegenwart, v. 28.148-166.
    • Hamzeh, M. A., Gharaie, M. H. M., Lahijani, H. A. K., Djamali, M., Harami, R. M., & Beni, A. N. (2016). Holocene hydrological changes in SE Iran, a key region between Indian summer monsoon and Mediterranean winter precipitation zones, as revealed from a lacustrine sequence from Lake Hamoun. Quaternary International, 408, 25-39.
    • Hollingsworth, J., Fattahi, M., Walker, R., Talebian, M., Bahroudi, A., Bolourchi, M. J., & Copley, A. (2010). Oroclinal bending, distributed thrust and strike-slip faulting, and the accommodation of Arabia–Eurasia convergence in NE Iran since the Oligocene. Geophysical Journal International, 181(3), 1214-1246.
    • Hughes, P. D., Woodward, J. C., Van Calsteren, P. C., Thomas, L. E., & Adamson, K. R. (2010). Pleistocene ice caps on the coastal mountains of the Adriatic Sea. Quaternary science reviews, 29(27), 3690-3708.
    • Kakroodi, A. A., Kroonenberg, S. B., Hoogendoorn, R. M., Khani, H. M., Yamani, M., Ghassemi, M. R., & Lahijani, H. A. K. (2012). Rapid Holocene sea-level changes along the Iranian Caspian coast. Quaternary International, 263, 93-103.doi:10.1016/j.quaint.2011.12.021.
    • Kakroodi, A. A., Leroy, S. A. G., Kroonenberg, S. B., Lahijani, H. A. K., Alimohammadian, H., Boomer, I., & Goorabi, A. (2015). Late Pleistocene and Holocene sea-level change and coastal paleoenvironment evolution along the Iranian Caspian shore. Marine Geology, 361, 111-125.
    • Karimi, A., Frechen, M., Khademi, H., Kehl, M., & Jalalian, A. (2011). Chronostratigraphy of loess deposits in northeast Iran. Quaternary International, 234(1), 124-132.
    • Kaser, G., Osmaston, H.A., (2002). Tropical Glaciers. Cambridge University Press, Cambridge.
    • Kehl, M., Frechen, M., & Skowronek, A. (2005). Paleosols derived from loess and loess-like sediments in the Basin of Persepolis, Southern Iran. Quaternary International, 140, 135-149.
    • Kelts, K., & Shahrabi, M. (1986). Holocene sedimentology of hypersaline Lake Urmia, northwestern Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 54 (1-4), 105-130.
    • Krinsley, D. B. (1970). A Geomorphological and Paleoclimatological Study of the Playas of Iran. Part II. GEOLOGICAL SURVEY RESTON VA.
    • Krinsley, D. B. (1970). A Geomorphological and Paleoclimatological Study of the Playas of Iran. Part II. GEOLOGICAL SURVEY RESTON VA.
    • Kuhle, M. (2008). The Pleistocene Glaciation (LGP and pre-LGP, pre-LGM) of SE Iranian Mountains Exemplified by the Kuh-i-Jupar, Kuh-i-Lalezar and Kuh-i-Hezar Massifs in the Zagros. Polarforschung, 77(2/3), 71-88.
    • Lie, Ø., Dahl, S. O., & Nesje, A. (2003). A theoretical approach to glacier equilibrium-line altitudes using meteorological data and glacier mass-balance records from southern Norway. The Holocene, 13(3), 365-372.
    • Lukas, S., & Bradwell, T. (2010). Reconstruction of a Lateglacial (Younger Dryas) mountain ice field in Sutherland, northwestern Scotland, and its palaeoclimatic implications. Journal of Quaternary Science, 25(4), 567-580.
    • Megard, R. O. (1967). LateQuaternary Cladocera of Lake Zeribar Western Iran. Ecology, 48(2), 179-189.
    • Osmaston, H. (2005). Estimates of glacier equilibrium line altitudes by the Area× Altitude, the Area× Altitude Balance Ratio and the Area× Altitude Balance Index methods and their validation. Quaternary International, 138, 22-31.
    • Osmaston, H. A. (1975). Models for the estimation of firnlines of present and Pleistocene glaciers. Processes in Physical and Human Geography: Bristol Essays. Heinemann Educational, London, 218-245.
    • Pellitero, R. (2013). Lateglacial evolution of Fuentes Carrionas massif (Cantabrian Range), palaeoenvironmental and chronological estimations. Cuatern. Geomorfol, 27(1-2), 71-90.
    • Pellitero, R., Rea, B. R., Spagnolo, M., Bakke, J., Hughes, P., Ivy-Ochs, S., ... & Ribolini, A. (2015). A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Computers & Geosciences, 82, 55-62.
    • Ramezani, E., Mrotzek, A., Mohadjer, M. R. M., Kakroodi, A. A., Kroonenberg, S. B., & Joosten, H. (2016). Between the mountains and the sea: Late Holocene Caspian Sea level fluctuations and vegetation history of the lowland forests of northern Iran. Quaternary International, 408, 52-64.
    • Regard, V., Bellier, O., Braucher, R., Gasse, F., Bourlès, D., Mercier, J., & Soleymani, S. (2006). 10 Be dating of alluvial deposits from southeastern Iran (the Hormoz Strait area). Palaeogeography, Palaeoclimatology, Palaeoecology, 242(1), 36-53.
    • Robinson, S. A., Black, S., Sellwood, B. W., & Valdes, P. J. (2006). A review of palaeoclimates and palaeoenvironments in the Levant and Eastern Mediterranean from 25,000 to 5000 years BP: setting the environmental background for the evolution of human civilisation. Quaternary Science Reviews, 25(13), 1517-1541.
    • Schweizer, G. (1970). Der kuh-e-sabalan (Nordwestiran). Beitrage zur Gletscher Kunde and Glazialgeomorphologie vorderasiatischer Hochgebirge: Tubinger geographische studien, 34, 163-178.
    • Seif, A. (2015). Equilibrium-line altitudes of Late Quaternary glaciers in the Oshtorankuh Mountain, Iran. Quaternary International, 374, 126-143.
    • Sharifi, A., Pourmand, A., Canuel, E. A., Ferer-Tyler, E., Peterson, L. C., Aichner, B., & Lahijani, H. A. (2015). Abrupt climate variability since the last deglaciation based on a high-resolution, multi-proxy peat record from NW Iran: The hand that rocked the Cradle of Civilization? Quaternary Science Reviews, 123, 215-230.
    • Snyder, J. A., Wasylik, K., Fritz, S. C., & Wright Jr, H. E. (2001). Diatom-based conductivity reconstruction and palaeoclimatic interpretation of a 40-ka record from Lake Zeribar, Iran. The Holocene, 11(6), 737-745.
    • Stansell, N. D., Polissar, P. J., & Abbott, M. B. (2007). Last glacial maximum equilibrium-line altitude and paleo-temperature reconstructions for the Cordillera de Mérida, Venezuelan Andes. Quaternary Research, 67(1), 115-127.
    • Stevens, L. R., Wright Jr, H. E., & Ito, E. (2001). Proposed changes in seasonality of climate during the Lateglacial and Holocene at Lake Zeribar, Iran. The Holocene, 11(6), 747-755.
    • Talebi, T., Ramezani, E., Djamali, M., Lahijani, H. A. K., Naqinezhad, A., Alizadeh, K., & Andrieu-Ponel, V. (2016). The Late-Holocene climate change, vegetation dynamics, lake-level changes and anthropogenic impacts in the Lake Urmia region, NW Iran. Quaternary International, 408, 40-51.
    • Thomas, D. S., Bateman, M. D., Mehrshahi, D., & O'hara, S. L. (1997). Development and environmental significance of an eolian sand ramp of last-glacial age, Central Iran. Quaternary Research, 48(2), 155-161.
    • Uchupi, E., Swift, S. A., & Ross, D. A. (1999). Late Quaternary stratigraphy, paleoclimate and neotectonism of the Persian (Arabian) Gulf region. Marine Geology, 160(1), 1-23.
    • Van Zeist, W. (1967). Late Quaternary vegetation history of western Iran. Review of Palaeobotany and Palynology, 2(1-4), 301-311.
    • Van Zeist, W., & Bottema, S. (1977). Palynological investigations in western Iran. Palaeohistoria Bussum, 19, 19-85.
    • Van Zeist, W., & Wright, H. E. (1963). Preliminary pollen studies at Lake Zeribar, Zagros Mountains, southwestern Iran. Science, 140(3562), 65-67.
    • Walker, R. T., & Fattahi, M. (2011). A framework of Holocene and Late Pleistocene environmental change in eastern Iran inferred from the dating of periods of alluvial fan abandonment, river terracing, and lake deposition. Quaternary Science Reviews, 30 (9), 1256-1271.
    • Wasylikowa, K. (1967). Late quaternary plant macrofossils from Lake Zeribar, western Iran. Review of Palaeobotany and Palynology, 2(1-4), 313-318.
    • Wasylikowa, K. (2005). Palaeoecology of Lake Zeribar, Iran, in the Pleniglacial, Lateglacial and Holocene, reconstructed from plant macrofossils. The Holocene, 15(5), 720-735.
    • Wasylikowa, K. (2005). Palaeoecology of Lake Zeribar, Iran, in the Pleniglacial, Lateglacial and Holocene, reconstructed from plant macrofossils. The Holocene, 15(5), 720-735.
    • Wasylikowa, K. R. Y. S. T. Y. N. A., & Walanus, A. D. A. M. (2004). Timing of aquatic and marshplant successions in different parts of Lake Zeribar, Iran, during the Late Glacial and Holocene. Acta Palaeobotanica, 44 (2), 129-140.
    • Wasylikowa, K., Witkowski, A., Walanus, A., Hutorowicz, A., Alexandrowicz, S. W., & Langer, J. J. (2006). Palaeolimnology of Lake Zeribar, Iran, and its climatic implications. Quaternary Research, 66(3), 477-493.
    •  Wright, H. E. (2004). Pleistocene Glaciation of Iraq, Developments in Quaternary Sciences Volume 2, Part C, Pages 215–216.
    • Wright, H. E.,Minneapolis Jr. (1962. Pleistocene glaciation in Kurdistan, Eiszeitaller und Gegenwart 12, 131-164.