ارزیابی حساسیت زمین لغزش با استفاده از شاخص آنتروپی و الگوریتم ماشین های پشتیبان بردار (مطالعه موردی: حوضه آبخیز کن)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه خوارزمی تهران

2 تهران دانشگاه خوارزمی

3 دانشگاه خوارزمی

چکیده

بررسی موجودی زمین لغزش‌ها، تیپولوژی و توزیع فضایی آنها ابزارهای ضروری برای تحدید نشانه‌های فضایی و زمانی زمین لغزش‌ها است. هدف تحقیق حاضر بررسی حساسیت زمین لغزش حوضه کن با استفاده از شاخص آنتروپی و الگوریتم ماشین‌های پشتیبان بردار است. معیارهای موثر در بروز زمین لغزش در این تحقیق شامل توپوگرافی، شیب، جهت شیب، کاربری اراضی، لیتولوژی، فاصله از گسل، فاصله از آبراهه و فاصله از جاده هستند. لایه‌های مکانی پارامترهای اثرگذار به پایگاه مکانی داده وارد شده و استاندارد سازی معیارها انجام شد. هر یک از پارامترها با توجه به میزان تأثیر بر وقوع مخاطره لغزش، طبق نظرات کارشناسی امتیازدهی و به صورت رستری به عنوان لایه‌های اصلی در پهنه بندی حساسیت لغزش با استفاده از شاخص آنتروپی بکار گرفته شده‌اند. ماتریس آنتروپی برای هر یک از عوامل محاسبه و سپس در محیط GIS نقشه پهنه‌بندی حساسیت لغزش منطقه، تهیه شده است. در الگوریتم پشتیبان بردار از تابع حلقوی استفاده شده بر اساس این الگوریتم هر یک از لایه های موثر در بروز زمین لغزش وزن دهی شده و سپس لایه ها هم پوشانی شده و نقشه حساسیت زمین لغزش بر اساس الگوریتم پشتیبان بردار تهیه شده است. جهت اعتبار سنجی مدل‌ها، با استفاده از 30 درصد نقاط لغزشی، منحنی ROC، ترسیم و مساحت زیر منحنی (AUC) محاسبه شده است. نتایج اعتبار سنجی نشان داده که الگوریتم ماشین‌های پشتیبان بردار ((SVM-SIGMOID (AUC = 0.91) در برآورد حساسیت زمین لغزش در منطقه مورد مطالعه نسبت به مدل شاخص آنتروپی (AUC= 0.86) از صحت بیشتر و قابلیت اعتماد بالاتری برخوردار است.

کلیدواژه‌ها


عنوان مقاله [English]

Landslide susceptibility mapping of Kan using index of Entropy and LSM

نویسندگان [English]

  • Masoumeh Gholami 1
  • Ezzatollah Ghanavati 2
  • ali ahmadabadi 3
2 Tehran.Kharazmi University
3 Tehran Kharazmi
چکیده [English]

Landslide susceptibility mapping (LSM) is a proper method to predicting landslide hazard risk in order to reducing its consequences. We prepared the LSM mapping of Kan basin by used of index of Entropy model and SVM-S. The validation of the produced maps is evaluated by used of the area under the curve ROC.
Study area
The study area is located on the north west of Tehran Province, between 35°46′ and 35°58′ N latitude and 51°10′ to 51°23′ E longitude. The area of the basin is 204.385 km2 (Figure. 2 (a)).
Material and methods
In the present study we used of 8 parameters consisting the distance from river, distance from fault, distance from road, land use, rainfall, aspect, slope, elevation, and lithology. Distance from the road was computed from the road at the interval 200 m using ArcGIS software (Fig.2f). The distance from road and distance from fault was calculated in same way (Figure. 2 d, h). The land use map has reclassified to 5 class (Figure.2g). The lithology parameter has been obtained by the reclassification of the geological map of Tehran at the scale of 1:100000 (Figure.2h). The digital elevation model (DEM) was extracted from the 1:50000 scale topographic maps. The parameters of slope degree (whit 5 classes), aspect layer were produced by used of the digital elevation model. (Figure.2c & d). The topography layer was reclassified into 5 class (Fig.2a). the introduced layers were used in this study according to the type of the models to produce of LSM maps.

Entropy index
Entropy is a measurement of the instability, imbalance, and uncertainty of a system (yang et al, 2010). The equations used to calculate the information coefficient dj representing the weight value for the parameter as a whole, are given as follows:
pij=xij/(∑_(i=1)^m▒xij ) (1)
(2) Ej= -k+∑_(i=1)^m▒pij ln⁡(pij)
K=〖c(lnm)〗^(-1) (3)
((4 dj = EJ – 1
After calculating the total weight (wj) using Equation 5, the landslide risk of the case study is evaluated:
(5) Hi = ∑_(i=1)^m▒xij
In equation 5, H is the coefficient of landslide risk, wj is the final weigh of all the factors and Xij is the weight of each factor (zongji et al, 2010). The final landslide susceptibility map was prepared by the summation of weighted products of the secondarily parametric maps.
H = (S×0/54) + (Df × 0/74) + (E × 0/082) + (Dr × 0/51) + (Dri × 0/51) + (A × 0/066) + (lu × 0/16) + (Lt × 0/0064)

Support Vector Machine
SVM algorithm as one of the most popular methods for solving regression problems has had significant results in landslide sensitivity zoning. consider a set of linear separable training vectors Xi (i = 1, 2, . . ., n). The training vectors consist of two classes, which are denoted as Yi = ±1. The goal of SVM is to search an n-dimensional hyperplane differentiating the two classes by their maximum gap. Mathematically, it can be expressed as:
1⁄2=∥w^2∥ (6) Y_i=((W.X_i )+)≥1 (7)
A Lagrangian formulation is introduced to solve the problem (equation 8). Thus, the goal is now to minimize the Lagrangian L with to W and b and maximize with respect to λi. For this reason, we used of following equation:
L=1/2∥w^2∥-∑_(i=1)^n▒Y^i ((W.X_i )+b)-1) (8)
four types of SVM is existed: linear, polynomial, radial basis function (RBF) and sigmoid. The mathematical representation of each kernel (linear, polynomial, radial basis function, and sigmoid) is listed below, respectively:
K (X_j 〖.X〗_i )= X_j^i.X_j
K (X_j 〖.X〗_i )=(γ∙ X_j^i+r) ._ γ>0
K (X_j 〖.X〗_i )=e^(-γ〖(X_i-X_j)〗^2 ) ._ γ>0
tanh (γ .X_i^T. X_j+r)
γ, d, and r are user-controlled parameters, as their correct definition significantly increases the accuracy of the SVM solution. In the present research we used of Sigmoid function.
To measure the validation of the models, we used of a relative ROC by comparing the existing landslide location with the two landslide susceptibility maps. The success rate curves were obtained by used of the 70% training dataset (29 landslide locations). ROC curve (AUC) represents the quality of the probabilistic model (it is ability to predict the occurrence or nonoccurrence of an event).
Result and discussion
The area of the low, moderate, and high classes based on the SVM model were found to be 109.485 km2, 38.7 km2, and 56.2 km2, respectively, whereas based on landslide susceptibility map by used of index of entropy, the 118.175 of the study area has low susceptibility risk, and the moderate, and high susceptibility zones have the 41.2 km2, 45.02 km2 of the study area, respectively (Fig. 3). Based on the entropy model, the 8 numbers of the landslides points located on the high-risk zone and the 8 numbers of the landslide points located on the moderate risk zone and low risk zone have 10 of the landslide points. Based on the LSM map produced by the SVM-S model, the 13 numbers of the landslide points located on the high risk zone and the 5 number of the landslide point located on the moderate-risk zone. The ROC plot assessment reveals that the AUC in the susceptibility map based on the index of entropy model was 0.86 and the AUC in the susceptibility map based on the Logistic Regression model was 0.91 (Fig. 5).
Conclusion
The high-risk zone on the LSM map produced by the SVM model is located in the north east and the west and south of the basin and based on the LSM map produced by the Entropy model is located in the north east and the south of the basin. The LSM map has produced in a regional scale, so further study need be carried out at the site-specific level to determine the exact extent site of the slope instability.
Keywords: LSM, Index of Entropy model, Kan basin, Support Vector Machine, Sigmoid function, SVM-SIGMOID.

کلیدواژه‌ها [English]

  • Landslide Susceptibility Map (LSM)
  • Index of Entropy model
  • Kan basin
  • Support vector machine (SVM)
  • شکاری بادی. علی، معتمدی راد. محمد، محمدنیا. ملیحه، 1394، تلفیق مدل ANP و شاخص آنتروپی شانون در برآورد عوامل موثر در وقوع و پهنه بندی خطر زمین لغزش (مطالعه موردی: حوضه فاروب روان نیشابور)، مطالعات جغرافیایی مناطق خشک، سال ششم، شمار 22، صص: 103-89.
  • شیرزادی. عطااله، سلیمانی. کریم، حبیب نژاد. محمود، کاویان. عطااله، چپی. کامران، 1396، معرفی یک مدل جدید ترکیبی الگوریتم مبنا به منظور پیش بینی حساسیت زمین لغزش های سطحی اطراف شهر بیجار، جغرافیا و توسعه، شماره 46، صص: 246-225.
  • صدوق ونینی. حسن، ثروتی. محمد رضا، نصرتی. کاظم، اسدی. میترا، قربانی. صدیق، 1394، پهنه بندی زمین لغزش در منطقه ی کاشتر کامیاران برای کاهش مخاطرات، فصلنامه دانش مخاطرات، دوره 2، شماره 1، صص: 116-105.
  • قاسمیان، بهاره.، عابدینی، موسی.، روستایی، شهرام.، 1396، ارزیابی حساسیت زمین لغزش با استفاده از الگوریتم ماشین پشتیبان بردار (مطالعه موردی: شهرستان کامیاران، استان کردستان)، پژوهش های ژئومورفولوژی کمی، سال ششم، شماره 3، صص: 36-15.
  • محمد خان. شیرین، ویسی. عبدالکریم، باقری. کیوان، ، پتانسیل سنجی خطر زین لغزش با استفاده از مدل آنتروپی، مطالعه موردی: (منطقه کوهستانی شیرپناه در جنوب غرب استان کرمانشاه)، فصلنلمه جغرافیایی سرزمین، سال یازدهم، شاره 44، صص: 102-89.
  • مقیمی، ابراهیم؛ سجاد باقری و طاهر صفرراد. 1391. پهنه بندی خطر وقوع زمین لغزش با استفاده از مدل آنتروپی (مطالعه موردی: تاقدیس نسار زاگرس شمال غربی). پژوهش­های جغرافیای طبیعی، 79: 90-77.
  • یمانی، مجتبی.، احمدآبادی، علی.، زارع، غلام رضا.، 1391، به کار گیری الگوریتم ماشین های پشتیبان بردار در پهنه بندی خطر وقوع زمین لغزش (مطالعه موردی: حوضه آبخیز درکه)، جغرافیا و مخاطرات محیطی، شماره سوم، صص 142-125.
  • Basharat, M., Rohn, J., Baig, M.S., Khan, M.R., 2014. Spatial distribution analysis of
  • mass movements triggered by the 2005 Kashmir earthquake in the Northeast Himalayas of Pakistan. Geom 206, 203–214.
  • Basu. Tirthankar, Pal. Swades, 2019, RS-GIS based morphometrical and geological multi-  criteria approach to the landslide susceptibility mapping in Gish River Basin, West Bengal, India, Advances in Space Research, Issue 3: 1253-1269.
  • Bera. Somnath, Guru. Balamurugan, V. Ramesh, 2019, Evaluation of landslide susceptibility models: a comparative study on the part of Western Ghat Region, India, Remote Sensing Applications: Society and Environment, PII: S2352-9385(17)30309-9, p:39-52, https://doi.org/10.1016/j.rsase.2018.10.010.
  • Broeckx. Jente, Vanmarcke. Matthias, Duchateau. Rica, Poesen. Jean, 2018, A data-based     landslide susceptibility map of Africa, Earth-Science Reviews, October 2018: 102-121. https://doi.org/10.1016/j.earscirev.2018.05.002.
  • Chauhan, S., Sharma, M., Arora, M.K., 2010. Landslide susceptibility zonation of theChamoli region, Garhwal Himalayas, using logistic regression model. Landslides7 (4), 411–423.
  • Dahal, R.K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S., Paudyal, P., 2008. Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology 102 (3–4), 496510.
  • Devkota, K.C., Regmi, A.D., Pourghasemi, H.R., Yoshida, K., Pradhan, B., Ryu, I.C.,Dhital, M.R., Althuwaynee, O.F., 2013. Landslide susceptibility mapping using certainty   factor, index of entropy and logistic egression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat. Hazards 65 (1), 135–165.
  • ESRI. (2017). ‘‘Arc Hydro Overview.” Retrieved 15 September 2017, from http://
  • resources.arcgis.com/en/communities/hydro/01vn0000000s000000.htm.
  • Faraji Sabokbar, H., Shadman Roodposhti, M., Tazik, E., 2014. Landslide susceptibility mapping using geographically-weighted principal component analysis. Geomorphology 226, 15–24.
  • Gorum, T., Fan, X., van Westen, C., Huang, R., Xu, Q., Tang, C., Wang, G., 2011. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 133 (3–4), 152–167.
  • H. Khan, M. Shafique, M. A. Khan et al., 2018, Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan, The Egyptian Journal of Remote Sensing and Space Sciences,  https://doi.org/10.1016/j.ejrs.2018.03.004.
  • Ilia, I., Tsangaratos, P., 2016. Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map. Landslides 13 (2), 379–397.
  • Kamp, U., Growley, B.J., Khattak, G.A., Owen, L.A., 2008. GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology 101 (4), 631–642.
  • Katz. Oded, Morgan. Julia K, Aharonov. Einat, Dugan. Brandon, 2018, Controls on the size  and geometry of landslides: Insights from discrete element numerical simulations, Geomorphology 220 (2014) 104–113, https://doi.org/10.1016/j.geomorph.2014.05.021.
  • Khan. H, Shafique. M, Khan. A, Mian. A. Bacha, Safeer U. Shah, Chiara. Calligaris, 2018, Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan, The Egyptian Journal of Remote Sensing and Space Sciences, 10 December 2018. https://doi.org/10.1016/j.ejrs.2018.03.004.
    • Lee, S., Talib, J.A., 2005. Probabilistic landslide susceptibility and factor effect analysis. Environ. Geol. 47 (7), 982–990.
    • Nefeslioglu, H.A., Gokceoglu, C., Sonmez, H., 2008. An assessment on the use of
    • logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng. Geol. 97 (3–4), 171–191.
    • Negnevitsky, M. 2002. Artifical Intelligence: A Guide to Intelligent Systems. Addison Wesley/Pearson Education, Harlow, England, p: 394.
    • Peng Ling, Ruiqing Niu Bo Huang, Xueling Wua, Yannan Zhao, Runqing Ye, 2014.
    • Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China. Geomorphology 204 287–301.
    • Pourghasemi.H. R. Moradi H. R.. Fatemi Aghda, S. M B. Gokceoglu Pradhan .2013. GISbased landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran). Arab J Geosci, DOI 10.1007/s12517-012-0825-
    • Rostami, Z.A., Al-modaresi, S.A., Fathizad, H., Faramarzi, M., 2016. Landslide susceptibility mapping by using fuzzy logic: a case study of Cham-gardalan catchment, Ilam, Iran. Arab. J. Geosci. 9 (17): 685- 695.
    • Scholkoph, B., Smola, A.J., Williamson, R.C., Bartlett, P.L., 2000. New support vectoralgorithms. Neural Computation 12, 1207–1245
    • Shafique, M., van der Meijde, M., Khan, M.A., 2016. A review of the 2005 Kashmir
    • earthquake-induced landslides; from a remote sensing prospective. J. Asian Earth Sci. 118, 68–80
    • Tien Bui, D., Tuan, T.A., Klempe, H., Pradhan, B., Revhaug, I., 2016. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13 (2), 361–378
    • Umar, Z., Pradhan, B., Ahmad, A., Jebur, M.N., Tehrany, M.S., 2014. Earthquake
    • induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. CATENA 118, 124–135.
    • Wang, Q., Li, W., 2017. A GIS-based comparative evaluation of analytical hierarchy
    • process and frequency ratio models for landslide susceptibility mapping. Phys. Geogr. 38 (4), 318–337.
    • Wu, Y., Li, W., Wang, Q., Liu, Q., Yang, D., Xing, M., Pei, Y., Yan, S., 2016. Landslide susceptibility assessment using frequency ratio, statistical index and certainty factor models for the Gangu County, China. Arab. J. Geosci. 9 (2), 1–16.
    • Xu C, XiweiXu a,n, FuchuDai b, ArunK. Saraf, 2012. Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008Wenchuan earthquake in China. Computers & Geosciences 46, 317–329.
    • Yang, Z; J. Oiao. 2009. Entropy- Based Hazard Degree Assessment for Typical landslides in the three gorges area, China. Environmental science and engineering, 15 may 2009: 519-529. DOI: 10.1007/978-3-642-00132-1_25
    • Yang, Z; J. Oiao. 2009. Entropy- Based Hazard Degree Assessment for Typical landslides in the three gorges area, China. Environmental science and engineering, 15 may 2009: 519-529. DOI: 10.1007/978-3-642-00132-1_25.
    • Yufeng, S; J. Fengxiang.  2009. Landslide stability analysis based on generalized information Entropy. International conference on environmental science and information application technology: 83-85. DOI: 10.1109/ESIAT.2009.258
    • Zongji, Y. 2010. Regional Landslide Zonation Based on Entropy Method in Three Gorges Area, China. 2010. Seventh International Conference on Fuzzy Systems and Knowledge Discovery, (FSKD 2010).