بررسی ژئومورفودایورسیتی آتشفشان دماوند و پیرامون آن بر اساس شاخص GmI

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار ژئومورفولوژی، دانشکده جغرافیا، دانشگاه تهران

2 استاد ژئومورفولوژی، دانشکده جغرافیا، دانشگاه تهران

3 استادیار پژوهشکده گردشگری، پژوهشگاه میراث فرهنگی و گردشگری

4 دانشجوی دکتری ژئومورفولوژی، دانشکده جغرافیا، دانشگاه تهران

چکیده

ژئومورفودایورسیتی بخشی از ژئودایورسیتی است که به ارزیابی ژئومورفولوژیکی یک قلمرو از نظر کمیت و تعداد انواع مختلف لندفرم‌ها به صورت بیرونی و درونی می‌پردازد. منطقه مورد مطالعه شامل میراث ژئومورفولوژیکی آتشفشان دماوند و پیرامون آن است. هدف اصلی مطالعه حاضر شناسایی و ارزیابی ژئومورفودایورسیتی به صورت کمی و تهیه نقشه‌های ژئومورفودایورسیتی منطقه مورد مطالعه است. داده‌های تحقیق حاضر شامل زمین‌شناسی، شبکه زهکشی، شیب، زبری ناهمواری و لندفرم‌ها است که با تکامل چشم‌انداز فیزیکی منطقه مورد مطالعه مرتبط هستند. ابزارهای تصاویر ماهواره‌ای لندست، نقشه‌های موضوعی، DEM 10 متر و غیره برای دستیابی به اهداف استفاده شده است. در این تحقیق برای ارزیابی از شاخص کمی ژئومورفودایورسیتی ملهلی و همکاران (2017) بهره گرفته شده و نتایج اعتبار سنجی شده است. نتایج شاخص ژئومورفودایورسیتی نشان داد که مناطق با ارزش ژئومورفودایورسیتی زیاد بین 20 الی 25 عمدتاً در ضلع شرقی دماوند و در امتداد دره هراز قرار دارد. برعکس، مناطق دارای ژئومورفودایورسیتی کم با ارزش بین 5 الی 10 مربوط به شمال غرب دماوند در محل دشت سرداغ و مخروط آتشفشان دماوند است. علاوه بر این، دامنه ژئومورفودایورسیتی منطقه مورد مطالعه از محل دره‌ها با ارزش حداکثر 25 به سمت قله‌ها با ارزش حداقل 5 کاهش می‌یابد. نتایج اعتبار سنجی نیز نشان داد که همبستگی فضایی خوبی بین مقادیر شاخص ژئومورفودایورسیتی، تعداد انواع مختلف لندفرم‌ها و میانگین تعداد لندفرم‌ها وجود دارد. مناطق با ژئومورفودایورسیتی زیاد، با یک مجموعه غنی و منحصربه‌فرد از انواع مختلف لندفرم‌ها و فرایندهای ژئومورفولوژیکی، نیازمند توجه ویژه برای استفاده‌های ژئوتوریسمی، علمی-آموزشی، میراث ملی و جهانی و ژئوپارک هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Geomorphodiversity Investigation of Damavand volcano and its surroundings based on the GmI Index

نویسندگان [English]

  • Mehran Maghsoudi 1
  • ebrahim moghimi 2
  • Mojtaba Yamani 2
  • Nasser Rezaei 3
  • Anvar Moradi 4
1 Associate Professor of Geomorphology, Faculty of Geography, University of Tehran
2 Professor of Geomorphology, Faculty of Geography, University of Tehran
3 Assistant Professor, Department of Tourism, Cultural Heritage and Tourism Research Institute
4 PhD Candidate in Geomorphology, Faculty of Geography, University of Tehran
چکیده [English]

Geomorphodiversity Investigation of Damavand volcano and its surroundings based on the GmI Index

Extended Abstract

Introduction
Geomorphodiversity defined as “the critical and specific assessment of the geomorphological features of a territory, by comparing them in an extrinsic and in intrinsic way, taking into account the scale of investigation, the purpose of the research and the level of scientific quality”. Area with high geomorphodiversity can provide a wide range of services, including provisioning (food products), regulating (erosion regulation) and supporting (land and water as a platform for human activities). The geomorphodiversity of Damavand volcano and its surroundings require special attention to identification, management and conservation, prevent degradation and construction in vulnerable areas. Promoted recognition of Geomorphodiversity can provide useful information about the management of geomorphological heritage and how to better protect them against destructive human activities and environmental hazards. Also, the preparation of Geomorphodiversity maps, the identification of areas with high potential for regional development and geotourism, provide comprehensive information for designers, planners and responsible organizations in these areas and create solutions for the environmental complexities of the study area; therefore The main objective of the present study is identification and quantitative assessment of geomorphodiversity and the preparation of geomorphodiversity maps of the study area.

Methodology
Damavand volcano was inscribed as Iran's first natural property in the national heritage list at the Cultural Heritage, Handicrafts and Tourism Organization on July 3, 2008. The data of this research include geology, drainage network, slope, roughness and landforms, which are related to the evolution of the physical landscape of the study area. Landsat satellite imagery, thematic maps, DEM10 meter, etc. are used to achieve the goals. In this study, geomorphodiversity quantitative index has been used for analyzing the results and the results has been validated by comparing with geomorphology map and field control. Geomorphodiversity index (GMI) is presented by Melelli et al. (2017). The value of geomorphodiversity is calculated from the sum of five factors including geological diversity, drainage network density diversity, roughness diversity, slope position index diversity, landform category diversity. All of them are grids of different terrain parameters.

Results and discussion
In the geomorphodiversity of the study area, the V1 class is 1.05%, V2, 25.84%, V3, 37.17%, V4, 22.14% and V5, 4.84% of the total area of the region. Distribution of geomorphodiversity of the study area is mainly related to the topography condition; the lowest value of the geomorphodiversity (V1) is related to the Damavand volcano cone, especially the lava plain in the northwest. The highest value of geomorphodiversity (V5) extends along the valley of Haraz, where different types of geomorphological processes are meeting, such as fluvial, glacial, hillslope, igneous, tectonic and etc. In other words, increasing the value of geomorphodiversity along the Haraz valley can be interpreted as a result of the frequency of the geomorphological processes presence. Validation results also showed that there is a good correlation between the geomorphodiversity index value, the number of different types of landforms and the average number of landforms. The most extensive area with the lowest value of geomorphodiversity is located in the northwest of Damavand and in the Sardagh plain. Along the Haraz valley, which has the highest geomorphodiversity, there are different types of landforms, including river terraces, lake terraces, landslide, talus, basaltic prisms, deep valleys, travertine landforms, high channel density and so on. In general, in the study area, the high value of geomorphodiversity is mainly located at the meeting place of Damavand volcanic lava with rivers.

Conclusion
The geomorphodiversity of Damavand volcano and its surroundings are one of the most important fortunes in the region. Geomorphological landforms have been maximized in these areas and offer a unique geomorphological complex. The geomorphological landforms density in these areas are maximized and provide a unique geomorphological collection. Areas with high geomorphodiversity are rich and unique collection of different types of landforms and geomorphological processes that require special attention for geotourism, scientific-educational, national and world heritage, geopark, and so on. In addition, the determination of areas with high geomorphodiversity is another way to promoting geomorphological heritage; In other words, geomorphodiversity are the backbone for identifying and assessing geomorphological heritage for various purposes of geotourism, national and world heritage, geopark, conservation of geomorphological heritage. To ensure that the values of these areas can be preserved for current and future generations, managing and conserving them is very important. Nevertheless, studies of geomorphodiversity are at an early stage and need more help and reflection by geomorphologists in collaboration with other researchers in the Earth sciences.

Keywords; Geomorphodiversity, Landform, Geomorphological heritage, Quantitative assessment, Damavand volcano

کلیدواژه‌ها [English]

  • Geomorphodiversity
  • Landform
  • quantitative assessment
  • Damavand volcano
  • امری کاظمی، علیرضا، 1391، اطلس میراث زمین شناختی ایران، سازمان زمین شناسی و اکتشافات معدنی کشور، 496 ص.
  • زارعی نژاد، مژگان، 1389، شناسایی اشکال ژئومورفولوژیک کوه آتشفشانی دماوند و قابلیت‌های زیست‌محیطی آن با استفاده از تصاویر ماهواره‌ای و GIS، ماهنامه علوم زمین و معدن، سال سوم، شماره 29، صص. 30-28.
  • قنواتی، عزت اله؛ کرم، امیر؛ فخاری، سعیده، 1393، ارزیابی ژئوکانزرویشن با تأکید بر زمین‌گردشگری (مطالعه موردی: منطقه دماوند)، پژوهش‌های ژئومورفولوژی کمی، دوره 3، شماره 2، صص. 77-89.
  • گلی مختاری، لیلا؛ نگهبان، سعید؛ شفیعی، نجمه، 1397، تحلیل مقایسه ای ژئودایورسیتی (تنوع زمین شناختی) در حوضه­های شمال غربی استان فارس، پژوهش­های ژئومورفولوژی کمی، دوره 7، شماره 3، صص 151-163.
  • مختاری، داود، 1394، ژئوتوریسم. انتشارات دانشگاه تبریز، چاپ اول، 424 ص.
  • مقصودی، مهران؛ برزکار، محسن؛ عباسی، موسی؛ مرادی، انور، 1393، ارزیابی توانمندی­های ژئوتوریسمی ژئومورفوسایت­های شهرستان مهاباد، مطالعات مدیریت گردشگری، شماره 25، صص 81 – 108.
  • مقصودی، مهران؛ مقیمی، ابراهیم؛ یمانی، مجتبی؛ مرادی، انور، 1397، چالش­های پیش رو در مدیریت و حفاظت میراث ژئومورفولوژیکی (مطالعه موردی: آتشفشان دماوند)، ششمین همایش ملی ژئومورفولوژی و چالش‌های پیش رو، دانشگاه شهید بهشتی، تهران.
  • منصوریان، علی؛ زارعی نژاد، مژگان؛ مقیمی، ابراهیم؛ امیدیان، صفیه، 1387، ایجاد بانک اطلاعات ژئومورفولوژی – زیست‌محیطی دماوند تحت WebGIS، فصلنامه علمی-پژوهشی علوم زمین، دوره 18، شماره 69، صص. 74-85.
  • نکوئی صدری، بهرام (1388). مبانی زمین گردشگری با تأکید بر ایران. انتشارات سمت، 212 ص.
  • Asrat, A., Demissie, M., Mogessie, A., 2012. Geoheritage conservation in Ethiopia: the case of the Simien Mountains. Quaestiones Geographicae. 31 (1), pp. 7- 23.
  • Bollati, I., Coratza, P., Giardino, M., Laureti, L., Leonelli, G., Panizza, M., Panizza, V., 2015. Directions in geoheri-tage studies: suggestions from the Italian Geomorphological Community. Engineering Geology for Society and Territory, 8, PP. 213-217.
  • Brocx, M. and Semeniuk, V., 2007. Geoheritage and geoconservation history, definition, scope and scale. Journal of the Royal Society of Western Australia, 90 (2). pp. 53-87.
  • Coratza, P. and Hoblea, F., 2018. The Specificities of Geomorphological Heritage. In: Reynard, E., Brilha, J., (Eds.). Geoheritage: Assessment, Protection, and Management. Elsevier, Amsterdam, pp. 87-104.
  • Church, M., 2011. Observations and experiments. In: Gregory, K.J., Goudie, A.S. (Eds.), the SAGE Handbook of Geomorphology. SAGE, London, pp. 121-141.
  • Davidson, J., Hassanzadeh, J., Berzins, R., Stockli, D. F., Bashukooh, B., Turrin, B. and Pandamouz, A., 2004- The geology of Damavand volcano, Alborz Mountains, northern Iran. Geol Soc Am Bull 116(1-2): 16-29. Doi: 10.1130/B25344.1.
  • De Reu, J., Bourgeois, J., Bats, M., Zwertvaegher, A., Gelorini, V., De Smedt, P., Chu, W., Antrop, M., De Maeyer, P., Finke, P., Van Meirvenne, M., Verniers, J., Crombé, P., 2013. Application of the topographic position index to heterogeneous landscapes. Geomorphology, 186, pp. 39–49.
  • El Hadi, H., Tahiri, A., Brilha, J., El Maidani, A., Baghdad, B., Zaidi, A., 2015. Geodiversity examples of Morocco: from inventory to regional geotourism development. Open Journal of Ecology, 5 (9), pp. 409 -419.
  • Ferrero, E., Giardino, M., Lozar, F., Giordano, E., Belluso, E., Perotti, L., 2012. Geodiversity action plans for the enhancement of geoheritage in the Piemonte region (north-west-ern Italy). Ann. Geophys, 55 (3), pp. 487–495.
  • Gordon, J.E., Barron, H.F., Hansom, J.D., Thomas, M.F., 2012. Engaging with geodiversity-why it matters. Proc. Geol. Assoc, 123 (1), pp. 1–6.
  • Gordon, J. E. and Barron, H. F., 2011. Scotland’s geodiversity: development of the basis for a national framework. Scottish Natural Heritage Commissioned Report, No. 417.
  • Gordon, J.E., 2012. Rediscovering a sense of wonder: geoheritage, geotourism and cultural landscape experi-ences. Geoheritage. 4 (1), pp. 65- 77.
  • Gray, M., 2008. Geodiversity: the origin and evolution of a paradigm. In: Burek, C.D., Prosser, C.D. (Eds.), the History of Geoconservation. Special Publication 300. The Geological Society, London, pp. 3136.
  • Gray, M., 2012. Valuing geodiversity in an “ecosystem services” context. Scottish Geographical Journal, 128 (3-4), 177-194.
  • Gray, M., 2018. Geodiversity: the backbone of geoheritage and geoconservation. In: Reynard, E., Brilha, J. (Eds.), Geoheritage: Assessment, Protection, and Management. Elsevier, Amsterdam, pp. 13-25.
  • Gray, M., Gordon, J.E., Brown, E.J., 2013. Geodiversity and the ecosystem approach: the contribution of geoscience in delivering integrated environmental management. Proc. Geol. Assoc, 124 (4), pp. 659- 673.
  • Hani, A. F. M., Sathyamoorthy, D., Asirvadam, V. S., 2011. A method for computation of sur-face roughness of digital elevation model terrains via multiscale analysis. Comput. Geosci, 37 (2), pp.177–192.
  • Jenks, G.F., 1967. The data model concept in statistical mapping. International Yearbook of Cartography, 7, pp. 186–190.
  • Jenness, J.S., 2004. Calculating landscape surface area from digital elevation models. Wildl. Soc. Bull, 32 (3), pp. 829–839.
  • Koh, Y. K., Oh, K. H., Youn, S. T., Kim, H. G., 2014. Geodiversity and geotourism utilization of islands: Gwanmae Island of South Korea. J. Marine Island Cult, 3, pp. 106-112.
  • Kot, R., 2017. A comparison of results from geomorphological diversity evaluation methods in the Polish Lowland (Toruń Basin and Chełmno Lakeland), Geografisk Tidsskrift-Danish Journal of Geography, 118 (1), pp. 17-35.
  • Lucchesi, S. and Giardino, M., 2012. The role of geoscientists in human progress. Ann. Geophys, 55 (3), pp.355-359.
  • Melelli, L., 2014. Geodiversity: a new quantitative index for natural protected areas en-hancement. GeoJournal of Tourism and Geosites, 13 (1), pp. 2–12.
  • Melelli, L., Vergari, F., Liucci, L., Del Monte, M., 2017. Geomorphodiversity index: Quantifying the diversity of landforms and physical landscape. Science of the Total Environment, 584–585 (2017), pp. 701–714.
  • Maghsoudi, M., Moradi, A., Moradipour, F. & Nezammahalleh M.A., 2018. Geotourism Development in World Heritage of the Lut Desert. Geoheritage, (in press). PP, 1-16.
  • Moghimi, E., Mansourian A., Zarei Nejad, M. and Saber Moghimi, M., 2008. Utilization of Distributed Architecture Based on Internet GIS for Geomorphologic Data and Environmental Management: Case Study of Damavand Volcano Conic, Iran. American Journal of Applied Sciences, 3(10), PP. 1300-1307.
  • Panizza, M., 2009. The geomorphodiversity of the Dolomites (Italy): A key of geoheritage assessment. Geoheritage, 1, pp. 33-42.
  • Pereira, D. I., Pereira, P., Brilha, J., Santhos, L., 2013. Geodiversity assessment of Paraná State (Brazil): an innovative approach. Environ. Manag, 52 (3), pp. 541–552.
  • Rocha, J., Brilha, J., Henriques, M. H., 2014. Assessment of the geological heritage of Cape Mondego Natural Monument (Central Portugal). Proc. Geol. Assoc. 125 (1), pp. 107 -113.
  • Tucker, G. E., Catani, F., Rinaldo, A., Bras, R. L., 2001. Statistical analysis of drainage density from digital terrain data. Geomorphology, 36 (3), pp. 187–202.
  • Thomas, M. F. 2012. A geomorphological approach to geodiversity - its applications to geoconservation and geotourism. Quaestiones Geographicae, 31(1), pp. 81-89.
  • Sharples, C., 2002. Concepts and Principles of Geoconservation (Version 3). Tasmanian Parks & Wildlife Service, Hobart, Tasmania.
  • Sarnowski, L., Podgórski, A., Brykała, D., 2016. Planning a greenway based on an evaluation of visual landscape attractiveness. Moravian Geographical Reports, 24, PP. 55–66.
  • Zwoliñski, Z., 2010. The routine of landform geodiversity map design for the Polish Carpathian Mts. Landform Analysis, 11, PP. 77–85.
  • Zwolinski, Z. and Stachowiak, J., 2012. Geodiversity map of the Tatra National Park for geotourism. Quaestion Geographical, 31 (1), pp. 99-107.
  • Weiss, A., 2001. Topographic Position and Landforms Analysis. ESRI User Conference, San Diego, CA.
  • Pellitero, R., Gonzalez´-Amuchastegui, M. J., Ruiz-Flan˜o, P., Serrano, E., 2010. Geodiversity and geomorphosite assessment applied to a Natural Protected Area: the Ebro and Rudron Gorges Natural Park (Spain). Geoheritage, 3, pp. 163 174.
  • Pellitero, R., Manosso, F. C., Serrano, E., 2014. Mid- and large-scale geodiversity calculation in Fuentes Carrionas (NW Spain) and Serra do Cadeado (Parana, Brazil): methodology and application for land management. Geografiska Annaler: Series A, Phys. Geogr, 97, pp. 219 -235.
  • Reynard, E. and Brilha, J., (Eds.), 2018. Geoheritage: Assessment, Protection, and Management, Elsevier, Amsterdam, pp. 482.
  • Reynard, E., Perret, A., Bussard, J. Grangier, L., Martin, S., 2016, Integrated Approach for the Inventory and Management of Geomorphological Heritage at the Regional Scale, Geoheritage, 8 (1), pp. 43-60.