تعیین سهم برآمدگی های ناگهانی در میزان فرسایش خندقی در سطوح شیب دار مطالعه موردی :زیرحوضه اوجان چای

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشگاه تبریز

چکیده

آشفتگی دامنه ها در اثر فرسایش خندقی در کوهستان های نیمه خشک،از رخدادهای مهمی است که با تغییرات اقلیمی تشدید می شود . انواع اشکال خطی به عنوان اشکال ژئومورفولوژیکی، مواد دامنه ای و در واقع تنها خاک قابل کشت کوهستان ها را وارد دره ها می سازند و به این ترتیب ،خندق ها با فعالیت از بخش سر و دیواره ها ،انبوهی از خاک های دامنه ای را بسوی آب های جاری سرازیر می کنند. در دامنه های شرقی کوهستان سهند ،بیشتر سطوح دامنه ها در شکل تسریع شده آن تحت فرسایش قرارگرفته اند .خندق های متعددی در دامنه های حوضه اوجان چای تشکیل شده اند .آبخیز اوجان چایاز محدوده های مهم کشت انواع محصولات دیمی و آبی کوهستان سهند به شمار می آیند،فرسایش خطی تشدید و تسریع شده در این محدوده از نوع فرسایش خندقی ،می تواند خسارات جبران ناپذیری در پی داشته باشد.از این نظر بررسی و شناسائی محدوده های تحت فرسایش خاک در اثر توسعه اشکال خطی از نوع فرسایش خندقی ،از اهمیت ویژه ای برخوردار است. در این مقاله با استناد به روش های کمی ،سعی شده است مقدار فرسایش حاصل از این اشکال برآورد شود.در مرحله نخست سعی شده است با استفاده از مقدار si شکل خندق ها مشخص،سپس با استفاده از معادله فرسایش(E)میزان فرسایش محاسبه شود و با تعیین مقدار فرسایش ،سهم بالاآمدگی ها در سطوح شیب دار با استفاده از رابطه K تعیین شود .

کلیدواژه‌ها


عنوان مقاله [English]

The estimation of uplifting share on gully erosion rates over slopes ,Case study :Ojan Chay ,North estern slopes of Sahand mountain

نویسندگان [English]

  • maryam bayatikhatibi
  • fariba karami
tabriz university
چکیده [English]

Soil erosion is a serious environmental problem around the world .The formation of gully systems is a sign of severe soil erosion, and gullies are an important sediment source in dry lands , also reported that gullies can account for a higher portion of sediment yield in semi arid.Gullies are typical erosion forms in semi-arid and arid landscapes all over the world where high morphological activity and dynamics can be observed. Semi-arid climate conditions and precipitation regimes encourage soil erosion processes through low vegeta-tion cover uplift and recurrent heavy rainfall events.Gully erosion is a threshold phenom-enon and occurs only when a threshold in terms of flow hydraulics, rainfall, topography, pedology , or land use has been exceeded .The North estern slopes of Sahand mountain are severely degraded by rill and gully erosion. In headwater streams in steep land settings, narrow and steep valley floors pro-vide closely coupled relationships between geomorphic components including hill slopes, tributary fans, and channel reaches. These relationships together with small catchment sizes result in episodic changes to the amount of stored sediment in channels. Erosion rate estimates are potentially strongly influenced by the estimation method.A total 11 gullies with various soils and land use types were investigated in Ojan catchement. Field data on gully channel geometry were collected in catchement.The obtained data confirmed the existence of the power relationship for rills and gullies, with the exponent varying from 0.44 for small gully) to 0.5 for gullies . The data did not allow deciding whether the exponent varies consistently with channel width or in a step-wise fashion.Annual sediment yield from gully complexes was derived based on their area using empir-ical equations obtained in the same rock formation and vary formation in headwater catchments of the Ojan River . Major sediment inputs follow high magnitude events. As headwater catchments are major sediment sources, interpretation of sediment delivery processes in these settings is a critical consideration in our understanding of basin-scale sediment dynamics.Analysis of these geomorphic features in steep headwater catchments can also be used to characterize the episodic manner of sediment delivery processes. Narrow valley floors in study area allow sediment to be directly transferred from outside the channels to inside. A data set on soil losses and controlling factors for 11 ephemeral gullies has been collected in the Northestern Sahand mountain . Of the observed ephemeral gullies, gullies. and ephemeral gullies developed on slopes. Analysis shows that E is capable of predicting ephemeral gully cross-sections well. Rather than revealing E ability of predicting ephemer-al gully erosion, this analysis stresses the problematic nature of physically based models, since they often require input parameters that are not available or can hardly be obtained. With respect to the value of simple topographical and morphological indices in predicting ephemeral gully erosion, this study shows that gullies, respectively, over 80% and about 75% of the variation in ephemeral gully volume can be explained when ephemeral gully length is known. Moreover, when previously collected data for ephemeral gullies in study areas and the data for gullies formed in the U form, it appears that one single length vol-ume . A simple procedure to predict ephemeral gully length based on topographical thresholds is presented here. Secondly, the empirical length–volume relation can also be used to con-vert ephemeral gully length data extracted from aerial photos into ephemeral gully vol-umes. The evidence showed that gullying was controlled by faulting and uplifting along the slope. It can be seen that the deep gullies clearly plot higher compared to the shallow gullies. This is also reflected by the intercept of the minimal topographical threshold line. Two bank gullies representing different morphological types of gullies (V-shaped and U-shaped) were chosen from a dataset of gully systems in semi-arid . Gully erosion generates significant volumes of sediment that is delivered to waterways throughout the world . Quantifying gully erosion rates and associated sediment yields is critical for the effective prioritisation of management efforts aimed at reducing the environmental impact of gully erosion .Soil fabric and rock structure and weathering studies were undertaken to establish the in-heritance of soil cracks from the underlying parent material.Two mechanisms of gully de-velopment appear to occur in upland catchement. The first produces stream coupled gul-lies resulting from lateral channel migration and erosion induced at the base of the hill slopes . The second produces more extensive gully networks that are often initiated in the mid slope .In this context, gullies link hill slopes and channels, functioning as sediment sources, stores and conveyors. From a review of gully erosion studies in semi-arid and arid regions, conclude that gullies contribute an average of 50 to 80% of overall sediment production in dry land environments .

کلیدواژه‌ها [English]

  • Tectonic uplifting
  • Erosion
  • Gully Erosion
  • Soil erosion
  • Ojan catchement
  • ابراهیمی ،مریم،1396،شناسایی علل وقوع فرسایش خندقی با تاکید به خصوصیات خاک مطالعه موردی حوضه آبخیر آق تمام ،نشریه حفاظت منابع آبو خاک ،شماره دوم ،صص 1-13.
  • اصغری سراسکاندرود،1396 ،تحلیل عوامل موثر در شکل گیری و گسترش فرسایش خندقی در محدوده اسکو،فضای جغرافیایی ،شماره 51 ،صص 285-301.
  • ·        بیاتی خطیبی،مریم،1385،پژوهشی پیرامون علل تشکیل و توسعه آبکندها در کوهستان های نیمه خشک،علوم زمین .شماره 60.صص 20-39.
  • ·        بیاتی خطیبی ،مریم،1385،بررسی وتحلیل فرسایش آبراهه ای با استناد به شواهد ژِئومورفولوژیکی ،مدرس علوم انسانی .شماره45.صص ،36-52.
  • Beavis, G.Sara .,2000.Structural controls on the orientation of erosion gullies in mid-western New South Wales, Australia, Geomorphology 33 _2000. 59–72.
  • Chiverrell ,R.C., A.M. Harvey, G.C. Foster.,2007.Hillslope gullying in the Solway Firth — Morecambe Bay region,Great Britain: Responses to human impact and/or climatic deterioration? Geomorphology 84 (2007) 317–343.
  • Crokea ,Jacky, Simon Mocklera, Peter Fogartyb, Ingrid Takken.,2005.Sediment concentration changes in runoff pathways from a forest road network and the resultant spatial pattern of catchment connectivity, Geomorphology 68 (2005) 257–268.
  • Eriksson ,M.G. , J.M. Olley , R.W. Payton.,2000.Soil erosion history in central Tanzania based on OSL dating of colluvial and alluvial hillslope deposits, Geomorphology 36 _2000. 107–128.
 

  • Faulkne,Hazel.,2008.Connectivity as a crucial determinant of badland morphology and evolution, Geomorphology 100 (2008) 91–103.
  • Kakembo ,V., W.W. Xanga, K. Rowntree.,2009.Topographic thresholds in gully development on the hillslopes of communal areas in Ngqushwa Local Municipality, Eastern Cape, South Africa, Geomorphology 110(2009) 188–194.
  • Kasai ,Mio., 2006.Channel processes following land use changes in a degrading steep, headwater stream in North Isla( nd, New Zealand, Geomorphology 81 (2006) 421–439.
  • Hobbs,S.D.,Paull,D.J and D.A,Clarke, 2017,Testing the water hypothesis: Quantitative morphological analysis of terrestrial and martian mid-latitude gullies, Geomorphology 295 (2017) 705.
  • McCloskey, G. L. ,Wasson, R. J., Boggs, G. S  and M,Douglas,2016, Timing and causes of gully erosion in the riparian zone of the semi-arid tropical Victoria River, Australia: Management implications, Geomorphology,V,266, Pages 96-104.
  • Nachtergaele ,Jeroen, J. Poesen, A. Steegen, I. Takken, L. Beuselinck,L. Vandekerckhove, G.   Govers., 2001.The value of a physically based model versus an empirical approach in the prediction of ephemeral gully erosion for loess-derived soils, Geomorphology 40 Ž2001. 237–252.
  • Poesen,Nyeeen.J.2003.Impact of road building on gully erosion risk,Earth,surf,process,landfo,27:1267-1883.
  • Perroy,Ryan L.,Bodo Bookhagen,Gregory P.Asner,Oliver A.Chadwick., 2010.Comparison of gully erosion estimates using airborne and ground-based LiDAR on Santa Cruz Island, California, Geomorphology 118 (2010) 288–300.
  • Piccarreta ,Marco, Hazel Faulkner, Mario Bentivenga, Domenico Capolongo.,2006 .The influence of physico-chemical material properties on erosion processes in the badlands of Basilicata, Southern Italy, Geomorphology 81 (2006) 235–251.
  • -Rothwell ,J.J. , M.G. Evans, L.C. Liddaman, T.E.H. Allott.,2007.The role of wildfire and gully erosion in particulate Pb export from contaminated peatland catchments in the southern Pennines, U.K. Geomorphology 88 (2007) 276–284.
  • Schiefer ,Erik , Robert Gilbert.,2007.Reconstructing morphometric change in a proglacial landscape using historical aerial photography and automated DEM generation, Geomorphology 88 (2007) 167–178.
  • Torri ,D. , J. Poesen , L. Borselli , A. Knapen.,2006.Channel width–flow discharge relationships for rills and gullies, Geomorphology 76 (2006) 273–279.
  • Valcarecel,M.2003.Ephemeral gully erosion in Northwestern Spain,Catena.50:199-216.
  • Vanwalleghema ,T., M. Van Den Eeckhautb, J. Poesen, J. Deckersc. Nachtergaele, K. Van Oost, C. Slenters.,2003.Characteristics and controlling factors of old gullies under forest in a temperate humid climate: a case study from the Meerdaal Forest (Central Belgium), Geomorphology 56 (2003) 15–29.
  • Vanwalleghema ,T., J. Poesena, J. Nachtergaelea, G. Verstraeten.,2005.Characteristics, controlling factors and importance of deep gullies under cropland on loess-derived soils, Geomorphology 69 (2005) 76– 91.
  • Whitford ,J.A., L.T.H. Newham , O. Vigiak , A.R. Melland, A.M. Roberts,.,2010.Rapid assessment of gully sidewall erosion rates in data-poor catchments: A case  study in Australia, Geomorphology 118 (2010) 330–338.
  • Wu ,Yongqiu, Qiuhong Zheng, Yongguang Zhang , Baoyuan Liu , Hong Cheng, Yanzai Wang          ., 2008.Development of gullies and sediment production in the black soil region of northeastern China , Geomorphology 101 (2008) 683–691.