بررسی تکامل ساختاری کوههای شمال بیرجند با استفاده از ترسیم مقاطع عرضی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه گلستان

2 دانشگاه بیرجند

3 گروه زمین شناسی، دانشکده علوم، دانشگاه بیرجند، بیرجند، ایران

چکیده

گسل ها از ساختارهای اصلی کنترل کننده‌ی هندسه و کینماتیک ساختاری در کوهزادها به شمار می‌آیند. منطقه‌ی مورد مطالعه (کوه‌های شکراب) در استان خراسان جنوبی و قسمت شمالی شهرستان بیرجند قرار دارد. هدف از این پژوهش بررسی تاثیر گسل‌ها بر تکامل ریخت‌زمین‌ساختی منطقه‌ی مورد مطالعه است. در این پژوهش تحلیل ساختاری کوه‌های شکراب واقع در شمال بیرجند با استفاده از عملیات صحرایی، ترسیم مقاطع عرضی و شاخص‌ ژئومورفیک طول- شیب‌ رودخانه (SL) انجام شد. برای تحلیل ساختاری و مشخص نمودن تاثیر گسل‌ها بر تکامل ساختاری ابتدا با استفاده از عملیات صحرایی گسل‌ها شناسایی گردید و سپس با استفاده از DEM و داده‌های مربوط به گسل‌های منطقه مقاطع عرضی ترسیم شد. مقاطع عرضی عمود بر ساختارهای منطقه (گسل‌های طولی و عرضی) رسم گردید. ترسیم مقاطع عرضی در جهت عمود بر گسل‌ها نشان‌می‌دهد که در مقطع CD که در قسمت غربی منطقه‌ی مورد مطالعه واقع شده است. شاهد کاهش شیب گسل‌ها از شمال به سمت جنوب هستیم، بنابراین مقطع CD فعال‌ترین مقطع می‌باشد. محاسبه‌ شاخص SL نشان می‌دهد که بیشترین فعالیت تکتونیکی و بیشترین مقدار شاخص ‌ SLمربوط به قسمت غربی کوه‌های شکراب است که دلیل آن عملکرد اخیر گسل‌های راندگی می‌باشد. بیشترین تراکم گسل‌های راندگی مربوط به بخش غربی منطقه‌ی مورد مطالعه است و در مناطقی از کوه-های شکراب که بیشترین تراکم گسل‌های راندگی وجود دارد بالاآمدگی تکتونیکی و فعالیت تکتونیکی نیز افزایش یافته است. نتایج این پژوهش نشان می‌دهند که با حرکت در روند E-W کوهستان شاهد بیشترین فعالیت تکتونیکی در قسمت غربی می‌باشیم.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating of structural evolution of northern Birjand Mountains using cross section drowing

نویسندگان [English]

  • maryam Ezati 1
  • Ebrahim Ghoami 2
  • Seyed Morteza Mousavi 3
2 university of Birjand
3 Department of Geology, Faculty of Sciences, University of Birjand, Birjand, Iran
چکیده [English]

The drainage pattern in tectonically active regions is very sensitive to processes such as upliftment, folding, faulting, and tilting which are responsible for river incision, basin asymmetry, drainage geometry, and river deflection. Shekarab Mountain is located in the East of Iran and north of sistan suture zone. Aim of this research is investigating effect of faults mechanism on structural evolution of Shekarab Mountain. In this study for investigating of structural evolution cross section drowing were used. In this research for evaluation rate of tectonic activity morphometric indices such as stream-gradient index SL were used. The highest amount of SL index is related to western part of Shekarab Mountain that is due to recent operation of trust faults. Field data and geomorphic indices shows that in areas of Shekarab Mountains that have the highest density of thrust faults under pressure operation of trust faults tectonic uplift and tectonic activity also increased.

Methodology
Faults and fractures of the study area are extracted from field operations and cross sections were drawed using Digital Elevation Model (DEM) and field data. Structural map of the studied brittle structures (faults and folds) were draw using field operations data. In this research to study the structural evolution of the Shekarab Mountains several investigations used on E-W trend geological cross section and morphometric index such as SL were used. In order to evaluate rate of tectonic activity stream length-gradient index (SL) were calculated. The SL index is very sensitive to change in channel slope, and this sensitivity allows the evaluation of relationship among possible tectonic activity, rock resistance, and topography.

Result and Discussion
Shekarab Mountains is located in eastern Iran and is placed in geographical position of 58˚ 37́E to 59˚ 16́E and 32˚ 50́N to 33˚ 09́N. Shekarab Mountains is a terminal splay of Nehbandan fault that is located in the Sistan suture zone. Iran lies on the Alpine earthquake belt which runs west-East from the Mediterranean to Asia. The present tectonics of Iran results from the north-south convergence between the plate of Arabia to the southwest and Eurasia to the northeast. This convergence is accommodated across the Iranian Plateau and adjacent deformed zones, and the deformation, as defined by seismicity and geology is not uniformly distributed. Much of the deformation is concentrated in the Zagros active thin-skinned Fold and Thrust Belt in the southwest, Alborz Thrust Belt bordering oceanic crust of the south Caspian depression, Kopeh-Dagh active thin skinned Fold Belt in the north east, and in East-Central Iranian thick-skinned range and basin province. Results from a regional GPS network indicate that the total convergence across Iran is 25 mm/yr in eastern Iran. Sistan structural zone is a north-south trend and represents the suture between Lut block and Afghan block. The existence of Nehbandan fault system in the border between Sistan suture zone and Lut block has caused several rock units in the margins and within the structural state of Sistan. Nehbandan fault system with strike-slip mechanism by north-south general trend has sub-branches in the North and South terminals. Northern terminal of Nehbandan fault has rotated toward west and its southern terminal toward east. Geometric and kinematic position of identified faults in the studied area show that most faults of study area have a reverse component such as fault F17 Reverse with sinistral strike slip component, fault F6 Sinistral strike slip with reverse component, fault F9 Reverse with dextral strike slip component.
Conclusion
Faults and folds are the most important structures in the Shekarab Mountains. For identification of faults and role of faults in structural evolution of Shekarab Mountain field operations were used. After completion field operations of study area Structural map of brittle structures (faults and folds) was prepared. Geometric and kinematic analysis of identified faults indicate that mechanism of most study areas faults are reverse with dextral strike slip component, which indicated the overcoming of compressional stress in Shekarab Mountains. Northern terminal of Nehbandan fault has rotated toward west and its southern terminal toward east. Geometric and kinematic position of identified faults in the studied area show that most faults of study area have a reverse component such as fault F17 Reverse with sinistral strike slip component, fault F6 Sinistral strike slip with reverse component, fault F9 Reverse with dextral strike slip component.The highest amount of SL index is related to western part of Shekarab Mountain that is due to recent operation of trust faults. Field data and geomorphic indices shows that in areas of Shekarab Mountains that have the highest density of thrust faults under pressure operation of trust faults tectonic activity also increased.

کلیدواژه‌ها [English]

  • Faults mechanism
  • Cross section
  • Shekarab Mountain
  • Northern Birjand
  • اوهانیان، ترگم؛ طاوسیان، شاهین و افتخارنژاد، جمشید، 1366، نقشه زمین­شناسی 100000/1 بیرجند، سازمان زمین­شناسی و اکتشافات معدنی کشور.
  • برزگر، فرخ، 1357، تفسیر شکستگی­های پوسته در ایران به کمک تصاویر ماهواره­ای. پایان­نامه کارشناسی ارشد، رشته زمین­شناسی، دانشگاه تهران.
  • خطیب، محمد مهدی و نوگل­سادات، علی اکبر، 1377، هندسه پایانه­ گسل­های امتدادلغز. پایان­نامه دکتری، رشته زمین شناسی، دانشگاه شهید بهشتی.
  • رشیدی، احمد؛ خطیب، محمد مهدی؛ هیهات، محمود رضا، 1391، سازوکار تشکیل دوپشته کوه کمرحاجی در شمال باختر بیرجند، فصل­نامه زمین­شناسی ایران، سال ششم، شماره 22، صص. 49-35.
  • روشن­روان، جمال؛ شجاعی کاوه، نسترن و بهره­مند، مریم، 1386، نقشه زمین­شناسی 100000/1 موسویه. سازمان زمین­شناسی و اکتشافات معدنی کشور.
  • سلیمانی، شهریار، 1378، رهنمودهایی در شناسایی حرکات تکتونیک فعال و جوان با نگرشی بر مقدمات دیرینه لرزه­شناسی. چاپ اول، پژوهشگاه بین­المللی زلزله شناسی و مهندسی زلزله، تهران. 
  • مدنی، حسن، 1380، زمین­شناسی ساختمانی و تکتونیک. چاپ هفتم، انتشارات جهاد دانشگاهی دانشگاه صنعتی امیر کبیر، تهران.
  • وحدتی­دانشمند، فرهاد و خلقی، محمد حسین، 1365، نقشه زمین­شناسی 100000/1 خوسف. سازمان زمین­شناسی و اکتشافات معدنی کشور.
    • Butler, R.W.H. Bond, C.E. Cooper, M.A. and Watkins, H., 2018. Interpreting structural geometry in fold-thrust belts: Why style matters. Journal of Structural Geology.
    • Caer, T. Souloumiac, P. Maillot, B. Leturmy, P. and Nussbaum, C., 2018. Propagation of a fold-and-thrust belt over a basement graben. Journal of Structural Geology.
    • EL Hamdouni, R. Irigaray, C. Fernandez, T. Chacon, J. and Keller, E. A., 2008. Assessment of relative active tectonics, southwest border of Sierra Nevada (southern spain). Geomorphology, 969, pp. 150-173.
    • Ioannis, M.T. Ioannis, K.K. and Pavlides, S., 2006. Tectonic geomorphology of the easternmost extension of the Gulf Corinth (Beotia, cnteral Greece). Tectonophysics, l453, pp. 211-232.
    • Jourdon, A. Rolland, Y. Petit, C. and Bellahsen, N., 2014. Style of Alpine tectonic deformation in the Castellane fold-and-thrust belt (SW Alps, France): Insights from balanced cross-sections. Tectonophysics, 633, pp. 143–155.
    • Keller, E.A. and Pinter N., 2002. Active tectonic, Earthquickes, Uplift and Landscape. Prentice Hall.
    • Masini, M. Bulnes, M. and Poblet, J., 2010. Cross-section restoration: A tool to simulate deformation. Application to a fault-propagation fold from the Cantabrian fold and thrust belt, NW Iberian Peninsula. Journal of Structural Geology, 32, pp. 172–183.
    • Marko, W.T. and Yoshinobu, A.T., 2011. Using restored cross sections to evaluate magma emplacement, White Horse Mountains, Eastern Nevada, U.S.A. Tectonophysics, No. 500, pp. 98–111.
    • Mukhopadhyay, D.K. and Mishra, M., 2005. A balanced cross section across the Himalayan frontal fold-thrust belt, Subathu area, Himachal Pradesh, India: thrust sequence, structural evolution and shortening. Journal of Asian Earth Sciences, 25, pp. 735–746.
    • Nakapelukh, M. Bubniak, I. Yegorova, T. Murovskaya, A. Gintov, O. Shlapinskyi, V. and Vikhot, Yu., 2017. Balanced geological cross-section of the outer Ukrainian Carpathians along the pancake profile. Journal of Geodynamics. 
    • Nogole-Sadate, M.A.A., 1978.  Les zones de decrochements et les vigrations  structurales en Iran, Consequences des resultants de l analyse Structural de la region du Qom. Unpublished PhD thesis, France, p. 201.
    • Nogole-Sadate M.A.A., 1985. Les zones de decrochements et les vigrations  structurales en Iran. Consequences des resultants de l analyse Structural de la region de Qom, Translated in Persian. Geol. Surv. Iran. Rep, NO .55.
    • Sharma, Gopal. P.K, Champati ray, and S. Mohanty., 2018. Morphotectonic analysis and GNSS observations for assessment of relative tectonic activity in Alaknanda basin of Garhwal Himalaya, India. Geomorphology 301, pp. 108–120.
    • Vernant P., Nilforoushan F., Hatzfeld D., Abbassi M.R., Vigny C., Masson F., Nankali H., Martinod J., Ashtiani A., Bayer R., Tavakolim F., and Chéry J., 2004. Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International, 157, pp. 381–398.
    • Walker R., and Jackson J., 2002. Offset and evolution of the Gowk fault, SE Iran: a major intra- continental strike- slip system. Journal of Structural Geology, 24, pp. 1677-1698.
    • Walker R., and Jackson J., 2004. Active tectonics and late cenozoic strain distribution in central and eastern Iran. Tectonics, 23, pp. 1-24.
  • Watkins H., Butler R.W.H., and Bond C.E., 2017. Using laterally compatible cross sections to infer fault growth and linkage models in foreland thrust belts. Journal of Structural Geology.