تاثیر نوزمینساخت بر توالی لندفرم‌های کوهستانی و پایکوهی ناحیه دامغان با استفاده از مدل SPIM

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مخاطرات ژئومورفیک، دانشکده جغرافیای دانشگاه تهران. نهران، ایران.

2 استاد ژئومورفولوژی، دانشکدة جغرافیا، دانشگاه تهران.

3 دانشیار ژئومورفولوژی، دانشکدة جغرافیا، دانشگاه تهران.

4 استاد زمین‏ شناسی (تکتونیک)، پژوهشکدة علوم ‏زمین، سازمان زمین‏شناسی و اکتشافات معدنی کشور.

5 دانشیار زمین‏شناسی، دانشکدة جغرافیا، دانشگاه تهران

10.22034/gmpj.2021.277140.1261

چکیده

هدف اصلی در این پژوهش بررسی تأثیر نوزمینساخت بر توالی لندفرم‌های کوهستانی و پایکوهی ناحیه دامغان با استفاده از تغییرات شیب و واکنش فرسایشی – برشی رودهای جاری بر سطح این لندفرم‌ها به عنوان یکی از عوامل کلیدی تحول چشم‌اندازها است. در این راستا ابتدا نقشه شیب آبراهه‌ها و نقشه توان برشی رود منطقه با توجه به پارامترهای تأثیرگذار شامل شیب رودخانه، مساحت حوضه زهکشی، نرخ تندی و بازده فرسایشی رود تهیه شد و سپس نیمرخ طولی برگرفته شده از این نقشه‌ها از شمال به جنوب منطقه با توجه به عوارض و لندفرم‌های برجسته‌ای که در ناحیه وجود دارد، ترسیم و مقایسه شد. از تحلیل نیمرخ‌های طولی برگرفته‌شده از نقشه شیب رود و توان برشی رودخانه می‌توان به این نتیجه رسید که این روش در شناسایی توالی لندفرم‌های متأثر از فرآیندهای زمینساختی، کاربرد زیادی دارد. هر جا که فعالیت گسل‌ها به شکل تراکششی منجر به ایجاد نواحی کم‌ارتفاع و فروافتاده شده‌است مانند حوضه واچاکیده آستانه، نرخ برش رود در برابر کاهش میزان شیب کانال، کاهش داشته‌است. در این حوضه نرخ برش رود 59/2 میلی‌متر در سال در برابر شیب کانال: 46/4 درصد می‌باشد.اما هر جا فعالیت گسل‌ها منجر به افزایش ارتفاعات و برآمدگی‌ها شده‌است، مانند خم‌گرفتاری ارتفاعات کرکسی، مجموعه راندگی ارتفاعات سفیدرشته‌کوه و یا فوربرگ‌های سربرآورده از میان رسوبات بادبزن‌های آبرفتی، نرخ برش رود در برابر افزایش شیب کانال، بالا رفته است. برای مثال در ارتفاعات کرکسی نرخ برش رود 12/10 میلی‌متر درسال در برابر شیب کانال 10/11 درصد می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The effects of neotectonic on the sequences of mountain and mountain front landforms in damghan area using SPIM Model

نویسندگان [English]

  • Fatemeh Kiaroostami 1
  • Mojtaba Yamani 2
  • Abolghasem Goorabi 3
  • mohammad Reza Ghassemi 4
  • seyed mohammad zamanzadeh 5
1 Department of physical geography, university of Tehran,Tehran,Iran.
2 Department of Physical Geography, Faculty of Geography, University of Tehran, Tehran, Iran
3 Faculty of Geography, Department of Physical Geography, University of Tehran, Tehran, Iran
4 Institute for Earth Sciences (RIES), Geological Survey of Iran (GSI
5 University of Tehran, Factually of Geography
چکیده [English]

Extended Abstract

Introduction
The identification and analysis of the active tectonic or denudation processes through the analysis of the deformation and landform changes consist one of the fundamental objectives of the tectonic geomorphological studies. Rivers are among the groups of geomorphologic elements that flow on a wide range of different landforms and can reveal the critical relationships among uplift, lithology, and denudation of heights. With regard to the evolution of landforms, this group of information and the relations between them are preserved by the bedrock properties. River Incision is the primary mechanism by which landscapes adapt to climate change and tectonic forces. Among the many factors that affect the Incision rate, the distribution of slope and steepness of water channels can be systematically effective. The main purpose of this study is to investigate the sequence of mountainous and foothills landforms in Damghan region using slope changes and erosion-incision reaction of rivers on the surface of these landforms as one of the key factors in landscape evolution.

Methodology
There are many models for calculating the river incision rate, but the most widely used is the SPIM model, which is presented in the form of the following equation:
I=K*A^m*S^n
The SPIM model is based on simple geometric parameters, such as the slope and area of the drainage basin extracted from the DEM elevation map. Some parameters are related to energy considerations, such as the rate of energy consumption in the channel bed and ridges, in which case; m: 0.5 and n: 1 are used as experimental constants in the formula.
In order to calculate the values of this index and prepare a river incision map, first the whole study area was divided into 64 sub-basins so that the resulting section values are suitable for surface interpolation. In the next step, the values of effective indicators in the SPIM formula including river slope, drainage surface area and erosion efficiency were calculated for each of the sub-basins. To calculate the erosion efficiency index, first the steepness values of the rivers of each basin were calculated from the formula of stream power incision, based on power regression, in the form of the following equation.
S=K_s A^(-θ)
In the above formula Ɵ is the amount of concavity and KSN is the amount of steepness.
After obtaining the steepness values of rivers in each of the 64 catchments, the erosion efficiency relationship was used as follows:
U=〖ksn〗^n*K
U is actually the rate of elevation or change in altitude of the area relative to the base level, which was calculated using the radar interfrometry method to determine the amount of vertical displacements in the area.
In order to prepare and analyze the slope and incision rate of rivers in Damghan region, and to convert point values into raster levels containing value, the inverse distance weighted interpolation method or IDW was used.
Results and Discussion
Comparison of longitudinal profiles taken from the slope map and incision rate of Damghan region shows the close relationship between these two parameters; Both of these parameters together play an important role in analyzing the tectonic status of the areas. In such a way that in examining the condition of the longitudinal profiles of the region from north to south, there are prominent features such as mountain belts or foreberg shapes; The slope rate and incision rate of the river increase and in front of where there are depression constructions such aspull apart basins or the end parts of longitudinal profiles that are based on alluvial plains, the slope rate and the following incision rate of the river decreases.
Therefore, the analysis of longitudinal profiles taken from the slope map and incision rate of rivers in Damghan region can be effective in identifying and analyzing the effect of active fault mechanisms on the sequence of landforms in the region. the areas that have mainly high slope and incision rate of the river and are shown prominently in the longitudinal profile, represent the performance of faults in the form of transpressional, which leads to the formation of elevated landforms. In contrast, the concave areas in the longitudinal profile of the slope and incision of the rivers in the region are mainly representative of the areas where the gentle slope has led to a reduction in the slope of river systems and thus reduced river incision capacity.these areas are either mainly based on flat lands which are in the southern part of mountain structure in form of alluvial sediments or they are collapsed structures due to transtentional motion of faults such as Astaneh pull-apart basin.
Conclusion
The activity of faults with different mechanisms causes the uplift or subsidence of landforms to form a series of successive landforms in an active tectonic environment. The rise and fall of these structures have led to an increase or decrease in their slope which will effect on the waterway systems that flow on these landforms. Wherever the fault mechanism leads to an increase in the height and elevation of the landforms, the slope of the river increases and as a result the incision power of the river increases. From the analysis of longitudinal profiles taken from the slope map and the incision of the river, it can be concluded that this method is very useful in identifying the sequence of landforms affected by tectonic processes. In a way, by examining the process of changing these longitudinal profiles, we can understand how active faults function in shaping landforms in compressive or tensile form. Wherever the slope of the waterway is high and the incision rate of the river is high, it indicates the existence of a elevated axis. This landform can be a mountain ridge or even elevated forms among alluvial sediments.wherever the slope and incision rate of channel show low values, it can indicate the existence of a concave tectonic basin.

کلیدواژه‌ها [English]

  • Eastern Alborz
  • Damghan
  • Active Tectonic
  • Incision Rate
  • Landforms Sequences
امیدی, پ. 1380. تحلیل ساختاری و دینامیکی تفضیلی زونهای گسلی در حاشیه جنوبی البرز خاوری(گستره سمنان-دامغان). دانشگاه تربیت مدرس.
خادمی, م. 1376. بررسی و تحلیل ساختاری گسل های دامغان و عطاری در گستره دامغان. دانشکده علوم پایه دانشگاه تربیت مدرس.
رحیمی, ب. 1385. مطالعات ساختاری رشته کوه البرز در شمال دامغان. دانشکده علوم زمین دانشگاه شهید بهشتی.
غلامی،م؛ جراحی،ه؛ نادعلیان،م. 1393. تحلیل ساختاری منطقه دهملا، مجله علوم زمین دانشگاه آزاد اسلامی، سال 24،شماره93.صفحات: 19-31.
محمد نژاد آروق, و. 1390. تحلیل مقایسه ای تحول مخروط افکنه های دامنه جنوبی البرز شرقی. دانشکده جغرافیا دانشگاه تهران.
 
 Allen, M. B.; Ghassemi, M. R.; Shahrabi, M. and Qorashi, M. (2003). Accommodation of Late Cenozoic Oblique Shortening in the Alborz Range, Northern Iran, Journal of Structural Geology, 25(5): 659-572.
Allen, M.; Jackson, J. and Walker, R. (2004). Late Cenozoic Reorganization of the Arabia-Eurasia Collision and the Comparison of Short-Term and Long-Term Deformation Rates, TECTONICS, 23(2): 1-16
Ambili, A.; Sushma, P.; Nathani, B.; Achim, B.; Shahzad, F. and Deenadayalan, K. (2012). Tectonic versus Climate Influence on Landscape Evolution: A Case Study from the Upper Spiti Valley, NW Himalaya, Geomorphology, 145-146: 32-44.
 
Arzhannikova, A., Arzhannikov,S.; Braucher,R.; Jolivet,M.; Aumaître,G.; Bourlès,D.; and Keddadouche ,K. 2018. ‘Morphotectonic Analysis and 10$Be Dating of the Kyngarga River Terraces (Southwestern Flank of the Baikal Rift System, South Siberia)’. Geomorphology 303:94–105. doi: 10.1016/j.geomorph.2017.11.019.
Bayasgalan, A.; Jackson,J.; Ritz,J.F.; and Carretier,S. 1999. ‘`Forebergs’, Flower Structures, and the Development of Large Intra-Continental Strike-Slip Faults: The Gurvan Bogd Fault System in Mongolia’. Journal of Structural Geology 21(10):1285–1302. doi: 10.1016/S0191-8141(99)00064-4.
Berberian, Manuel. 1976. ‘Quaternary Faults in Iran’. Pp. 187–258 in Vol. 39.
Bhattacharya, A.; Arora, M.K; Sharma, M.L.; Vöge, M, and Bhasin,R. 2014. ‘Surface Displacement Estimation Using Space-Borne SAR Interferometry in a Small Portion along Himalayan Frontal Fault’. Optics and Lasers in Engineering 53:78-164. doi: 10.1016/j.optlaseng.2013.09.001.
Burbank, D. W., and Anderson R. S. 2001. Tectonic Geomorphology.pages:454.
Cristea, A. 2015. ‘Spatial Analysis of Channel Steepness in a Tectonically Active Region: Putna River Catchment (South-Eastern Carpathians)’. Geographia Technica 10:19–27.
Danezis, C., Chatzinikos, M and Kotsakis,M. 2020. ‘Linear and Nonlinear Deformation Effects in the Permanent GNSS Network of Cyprus’. Sensors 20(6):1-19.
Dong, Y.; Aixia Dou,Q.L,  and Wang,X. 2011. ‘Extracting Damages Caused by the 2008 Ms 8.0 Wenchuan Earthquake from SAR Remote Sensing Data’. The 2008 Wenchuan Earthquake, China and Active Tectonics of Asia 40(4):14-907. doi: 10.1016/j.jseaes.2010.07.009.
Frank, R. 1980. ‘Smooth Interpolation of Scattered Data by Local Thin Plate Spline’. Computer and Mathematic with Applications 8(4):81-273.
Goorabi, A. 2020. ‘Detection of Landslide Induced by Large Earthquake Using InSAR Coherence Techniques – Northwest Zagros, Iran’. The Egyptian Journal of Remote Sensing and Space Science 23(2):195–205. doi: 10.1016/j.ejrs.2019.04.002.
Hack, J.T. (1960). Interpretation of Erosional Topography in Humid Temperate Regions.
 Bobbs-Merrill.97pages.
Harris, K., D. Keen, and T. Michael. 2013. When Disaster and Conflicts Collide. a Paper from British. Research reports and studies.Pages:54.
Hollingsworth, J.; Nazari, H.; Ritz, J.; Salamati, R.; Talebian, M.; Bahroudi, A.; Mark Walker, R.; Rizza, M. and Jackson, J. (2010). Active Tectonics of the East Alborz Mountains, NE Iran: Rupture of the Left-Lateral Astaneh Fault System during the Great 856 A.D. Qumis Earthquake. Journal of Geophysical Research,115, B12313: 1-19.
Howard, A. 1994. ‘A Detachment-Limited Model of Drainage-Basin Evolution’. Water Resources Research - WATER RESOUR RES 30(7):2261-2285. doi: 10.1029/94WR00757.
Hsieh, CH.SH. Shih, T.Y.; Hu, J.CH; Tung, H.; Huang, M.H, and Angelier, J. 2011. ‘Using Differential SAR Interferometry to Map Land Subsidence: A Case Study in the Pingtung Plain of SW Taiwan’. Natural Hazards 58(3):32-1311. doi: 10.1007/s11069-011-7-9734.
Hunt, Ch B. (1988). Introduction. In Geology of the Henry Mountains, Utah, as recorded in the notebooks of G. K. Gilbert, Geological Society of America. 76-1875.
Jackson, J.; Keith, F. P; Mark, B.A. and Berberian, M. (2002). Active Tectonics of the South Caspian Basin. Geophys. J. Int. (2002) 148, 214-245
Javidfakhr, B. and Ahmadian, S. (2018). Geomorphic and Structural Assessment of Active Tectonics in NW Alborz, Geopersia, 8(2): 261-278.
Javidfakhr, Bita, and Seiran Ahmadian. 2018b. ‘Geomorphic and Structural Assessment of Active Tectonics in NW Alborz’. Geopersia 8(2):78-261. doi: 10.22059/geope.2018.251479.648371.
 
Jiang, W., Han,Z and Jia,Q. 2016. ‘Stream Profile Analysis, Tectonic Geomorphology and Neotectonic Activation of the Damxung Yangbajain Rift in South Tibeatan Plateau’. Journal of Earth Surface Process 41:26-1312.
Khademi, Mohsen. 1997. Structural Analysis of Damghan and Attari Faults in Damghan Range. Iran: Tarbiat Modares University.
Kirby, E, Whipple,K. (2001). Quantifying Differential Rock-Uplift Rates via Stream Profile Analysis, Geology, 29.415-418.
Lague, D., Davy ,P,  and A. Crave. 2000. ‘Estimating Uplift Rate and Erodibility from the Area-Slope Relationship: Examples from Brittany (France) and Numerical Modelling’. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 25(6):48-543. doi: 10.1016/S1464-1895(00)00083-1.
Lague, D. 2014. ‘The Stream Power River Incision Model: Evidence, Theory and Beyond’. Earth Surface Processes and Landforms 39:38-61. doi: 10.1002/esp.3462.
Lague, D. and Davy, Ph. (2003). Constraints on the Long-Term Colluvium Erosion Law by Analyzing Slope-Are a Relationships at Various Tectonic Uplift Rates in the Siwalik Hills (Nepal), Journal of Geophysical Research, 108: ETG-1-18.
Lavé, J.; and Avouac ,J.Ph. A. 2000. ‘Active Folding of Fluvial Terraces across the Siwaliks Hills, Himalayas of Central Nepal’. Journal of Geophysical Research Atmospheres 105:70-5735. doi: 10.1029/1999JB900292.
Li, ZH.W; Yang, Z.F.;  Jun Zhu,J.; Hu,J.;  Wang, Y.J.; Li,P.X, and Chen,G.L. 2015. ‘Retrieving Three-Dimensional Displacement Fields of Mining Areas from a Single InSAR Pair’. Journal of Geodesy 89(1):17–32. doi: 10.1007/s00190-014-0757-1.
Lin-lin, G.; Cheng, E.; Polonska, D.; Rizos, C.; Collins, C, and Smith, C. 2003. ‘Earthquake Monitoring in Australia Using Satellite Radar Interferometry’. Wuhan University Journal of Natural Sciences 8(2):58-649. doi: 10.1007/BF02899830.
Liosis, N.; Marpu,P.R.; Pavlopoulos,K, and Ouarda,T. 2018. ‘Ground Subsidence Monitoring with SAR Interferometry Techniques in the Rural Area of Al Wagan, UAE’. Remote Sensing of Environment 216:88-276. doi: 10.1016/j.rse.2018.07.001.
Lu, P. and Shang, Y. (2015). Active Tectonics Revealed by River Profiles along the Puqu Fault, Water Resources Research, 7: 1628-1648.
Mudd, S.; Clubb, F.; Gailleton, B. and Hurst, M. (2018). How Concave Are River Channels?, Earth Surface Dynamics Discussions, 6: Pp.1-34.
Mahmood, S. A. and Gloaguen, R. (2012). Appraisal of Active Tectonics in Hindu Kush: Insights from DEM Derived Geomorphic Indices and Drainage Analysis, Geoscience Frontiers, 3:407-428.
Montgomery, D. R.; Tim, B. A.; Buffington, J.; Peterson, N.; Schmidt, K.M. and Stock, J.D. (1996). Distribution of Bedrock and Alluvial Channels in Forested Mountain Drainage Basins, Nature, 381(6583): 587-589.
Nicholson, U.i.; VanLaningham, S. and Macdonald, D. (2013). Quaternary Landscape Evolution over a Strike-Slip Plate Boundary: Drainage Network Response to Incipient Orogenesis in Sakhalin, Russian Far East, Geosphere, 9: 588-601.
Omidy, Parviz. 2002. Detailed Structural and Dynamic Analysis of Fault Zones in the Southern Margin of East Alborz(Semnan-Damghan Region). Iran: Tarbiat Modarres University.
Owen, L.; Cunningham, D.; Richards, B.; Rhodes, E.; Windley, B.;  Dorjnamjaa, D and Badamgarav,J. 1999. ‘Timing of Formation of Forebergs in the Northeastern Gobi Altai, Mongolia: Implications for Estimating Mountain Uplift Rates and Earthquake Recurrence Intervals’. Journal of the Geological Society 156:64-457. doi: 10.1144/gsjgs.156.3.0457.
 
Philip, G. M., and Watson,D.F. 1982. ‘A Precise Method for Determining Contoured Surfaces’. Australian Petroleum Association Journal 22:12-205.
Pieraccini, M.; Mecatti, D.; Noferini,L, L Luzi,G.;  Franchioni,G, and Carlo Atzeni. 2002. ‘SAR Interferometry for Detecting the Effects of Earthquakes on Buildings’. NDT & E International 35(8):25-615. doi: 10.1016/S0963-8695(02)00047-6.
Pourramezani, A. and Bourzoie, S. (2017). ‘Study of Tectonic Activity in Young Eastern Alborz, Central Iran on the Basis of Alluvial Fans in the Shahrud-Bastam Area’, Open Journal of Geology, 7(1): 69-82.
Rahimi, B. 2002. Structural studies of Alborz Mountains in northern Damghan. Iran: Beheshti University.
Raucoules, D., Bourgine,B.; de Michele, M.; Le Cozannet,G.; Closset,L.; Bremmer,C.; Veldkamp,H.; Tragheim,D.; Bateson,L.;  Crosetto,M.; Agudo,M, and Engdahl,M. 2009. ‘Validation and Intercomparison of Persistent Scatterers Interferometry: PSIC4 Project Results’. Journal of Applied Geophysics 68(3):47-335. doi: 10.1016/j.jappgeo.2009.02.003.
Rizza, M.; Mahan, S.; Ritz, J. F.; Nazari, H.; Hollingsworth, J. and Salamati, R. (2011). Using Luminescence Dating of Course Matrix Material to Estimate the Slip Rate of the Astaneh Fault, Iran, Quaternary Geochronology, 6(3):390-406.
Schaefer, L.N.; Traglia, F.D.; Chaussard   ,E.;  Lu, ZH.;  Nolesini,T. and Casagli ,N. 2019. ‘Monitoring Volcano Slope Instability with Synthetic Aperture Radar: A Review and New Data from Pacaya (Guatemala) and Stromboli (Italy) Volcanoes’. Earth-Science Reviews 192:57-236. doi: 10.1016/j.earscirev.2019.03.009.
Schumm, S. A. 1977. The Fluvial System. Wiley, New York,.pages:338.
Shahzad, F, and Gloaguen, R. 2011. ‘TecDEM: A MATLAB Based Toolbox for Tectonic Geomorphology, Part 1: Drainage Network Preprocessing and Stream Profile Analysis’. Computers & Geosciences 37(2):60-250. doi: 10.1016/j.cageo.2010.06.008.
Snyder, E.; Johnson, J.; Spyropolou, K.; Wobus, C.C.; Whipple ,K.; Kirby ,E.; Snyder ,N.; Johnson ,J.; Crosby ,B. and Sheehan ,D. (2006). Tectonics from Topography: Procedures, Promise, and Pitfalls, Geological Society of America Special Paper, 398: 55-74.
Stoecklin, Jovan. 1974. ‘Northern Iran: Alborz Mountains. In: Spencer, A.M., Ed., Mesozoic-Cenozoic Orogenic Belts; Data for Orogenic Studies; Alpine-Himalayan Orogens, Special Publication’. Geological Society 4(1):34-213.
Strozzi, T.; Frey, H.; Christian Huggel   ,A.; Wegmüller ,R.K.; and Rapre, A.C. 2018. ‘Satellite SAR Interferometry for the Improved Assessment of the State of Activity of Landslides: A Case Study from the Cordilleras of Peru’. Remote Sensing of Environment 217:25-111. doi: 10.1016/j.rse.2018.08.014.
Sundararajan, G., Roy, M.; and Venkataraman ,M. 1990. ‘Erosion Efficiency-a New Parameter to Characterize the Dominant Erosion Micromechanism’. Wear 140(2):81-369. doi: https://doi.org/10.1016/0043-1648(90)90096-S.
Tucker, G., and Slingerland,R, .1996. ‘Predicting Sediment Flux from Fold-Thrust Belts’. Basin Research 8:49-329. doi: 10.1046/j.1365-2117.1996.00238.x.
Vassilakis, E.; Skourtsos, E. and Kranis, H. (2007). Estimation of Tectonic Uplift Rate Using Quantified Morphometric Indices. 8TH PAN-HELLENIC GEOGRAPHICAL CONFERENCE: 17-26.
Vernant, Ph.; Nilforoushan, F.; Chéry, J.; Bayer, R.; Djamour, Y.; Masson, F.; Nankali, H.; Ritz, J. F.; Sedighi, M. and Tavakoli, F. (2004). Deciphering Oblique Shortening of Central Alborz in Iran Using Geodetic Data, Earth and Planetary Science Letters, 223(1): 177-185.
 
Walker, R.; and Jackson,J. 2004. ‘Active Tectonics and Late Cenozoic Strain Distribution in Central and Eastern Iran: TECTONICS OF CENTRAL AND EASTERN IRAN’.Tectonic,23(5):1-24.
Wang, Y.; Zhang, H.; Zheng, D; Jingxing, Y; Jian-Zhang, P. and Yan, M (2017). Coupling Slope–Area Analysis, Integral Approach and Statistic Tests to Steady-State Bedrock River Profile Analysis, Earth Surface Dynamics, 5: 145-160.
Whipple, K.; Wobus, C.; Crosby, B.; Kirby, E. and Sheehan, D. (2007). New Tools for Quantitative Geomorphology: Extraction and Interpretation of Stream Profiles from Digital Topographic Data, Geol. Soc. Am. Annu. Meet. Course Notes, 1. Sponsored by: NSF Geomorphology and Land Use Dynamics.1-26.
Whipple, K.; Gregory, S.; Hancock, S. and Robert S. Anderson (2000). River Incision into Bedrock: Mechanics and Relative Efficacy of Plucking, Abrasion, and Cavitation, GSA Bulletin, 112(3): 490-503.
Whipple, K, and Tucker ,G. 2002. ‘Implication of Sediment-Flux-Dependent River Incision Models for Landscape Evolution’. JOURNAL OF GEOPHYSICAL RESEARCH, 107:1-20. doi: 10.1029/2000JB000044.