تعیین آستانه بارش بحرانی در وقوع زمین لغزش های سطحی بر اساس مدل فرایند محور (مطالعه موردی: منطقه ی جوانرود ،استان کرمانشاه)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیارگروه علوم انسانی و اجتماعی دانشگاه فرهنگیان، تهران

2 دانشیار آبخیزداری، گروه منابع طبیعی، دانشگاه یزد.

3 دانش آموخته دکتری ژئومورفولوژی، مهارت آموز دانشگاه فرهنگیان.

10.22034/gmpj.2022.315458.1315

چکیده

بروز پدیدة زمین‌لغزش می‌تواند ناشی از عوامل متعدد زمین‌شناسی، ژئومورفولوژیکی، هیدرولوژیکی، بیولوژیکی و انسانی باشد. باوجوداین، نقش اساسی در شروع زمین‌لغزش را عمدتاً عاملی ماشه‌ای ایفا می‌کند. بارندگی، به‌عنوان متداول‌ترین عامل ماشه‌ای وقوع زمین‌لغزش‌ها شناخته شده است. هدف این تحقیق تعیین بارش بحرانی در وقوع لغزش‌های کم‌عمق منطقه‌ی جوانرود با استفاده از مدل فرایند محور ( فیزیک پایه) Talebi 2008 می‌باشد این مدل با درنظرگرفتن پلان دامنه (همگرا، واگرا و موازی)، پروفیل طولی دامنه (محدب، مقعر، مستقیم)، هیدرولوژی زیرسطحی همراه با ویژگی‌های مکانیکی خاک، ضریب پایداری دامنه‌ها را مورد تجزیه‌وتحلیل قرار می‌دهد. آنگاه با توجه به ضریب پایداری محاسبه شده به تعیین بارش بحرانی برای دامنه‌های مطالعاتی پرداخته می‌شود. برای دستیابی به هدف موردنظر، 12 دامنه شامل 7 دامنه لغزشی و 5 دامنه فاقد لغزش به عنوان نمونه مطالعاتی در منطقه جوانرود انتخاب شدند و سپس تمامی متغیرهای تحلیل پایداری شیب با استفاده از مطالعات میدانی، آزمایشگاهی و تجزیه‌وتحلیل توپوگرافی دامنه‌ها استخراج شد و ضریب پایداری برای هر دامنه محاسبه گردید. سپس با استفاده از روش معکوس کاهش ضریب اطمینان تا حد ناپایداری یک به تعیین بارش بحرانی برای دامنه‌های مطالعاتی پرداخته شد. نتایج حاصل از میزان ضریب پایداری به‌دست‌آمده و بارش‌های بحرانی دامنه‌های مطالعاتی حاکی از کارایی مناسب این مدل‌ها جهت تعیین بارش بحرانی می‌باشد. به‌طوری‌که در منطقه جوانرود دامنه‌های مستعد لغزش برای ناپایدار شدن، بارش بحرانی کمتری نسبت به دامنه‌های پایدار نیازمندند. مطابق محاسبات به دست آمده میزان بارش بحرانی برای دامنه‌های ناپایدار کمتر از 50 میلی‌متر و برای دامنه‌های پایدار بیش از 100 میلی‌متر در روز می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Determining the Threshold of Critical rainfall in the Occurrence of Surface Landslides Using Physically Based Models (Case study: Javanrood basin, Kermanshah Province, Iran)

نویسندگان [English]

  • Ali sadeghi 1
  • Ali Talebi 2
  • parvin zarei 3
1 Assistant Professor, Department of Humanities and Social Sciences, Farhangian University.Tehran
2 Prof., Faculty of Natural Resources and Desert Studies, Yazd University.
3 Trainee of Farhangian University
چکیده [English]

Extended Abstract

1.Introduction

Worldwide cause landslides are considered as natural disasters, which to many dead and intense damage. So, it is important to examine the impressive factors for urgent planning and presence management solutions for sensitive regions. A landslide based on geological and geomorphological factors, hydrological, and biological and human; but only the trigger or external factor is a key factor to start a landslide. Intense storm, fast snow shrinking, sudden changes in groundwater level, earthquake, and fast erosion are regarded as the most important trigger factors for landslides (Sidle & Ochiai 2006(. Rainfall is considered as the most common trigger factor in the occurrence of landslides (Crozier1999; Jacob 2003). The event of a landslide relies on various factors, for example, geological, geomorphological, hydrological, biological, and human. However, the basis in making a landslide is mainly a trigger factor where precipitation is recognized as the most common one. Therefore, recognition of natural factors and human activities, causes and intensifiers of landslides, on the other hand slope stability analysis largely experts will help determine the most appropriate way to integrate slopes slippery. Whether old or new in this region, the slopes of folded Zagros in the range of studying area are sensitive to slippery movements, proved by numerous landslides. Massive movement of materials, like a landslide, is one of the problematic slope processes in Javanrood located in the northwest of folded Zagros, for this phenomenon leads to demolition of forest lands, farms, and pastures of the region. In addition, it is considered a threat to road traffic. Current study to the threshold of critical rainfalls in the occurrence of landslides in the Javanrood basin using a physically based model set. Physical models need accurate and comprehensive information on soil characteristics and hydrology slope. Operations such as the pattern of rainfall and groundwater level changes modeled mathematically in physical models of landslides

2. Methodologies

Application of materials in this research was Javanrood s 1. 50000 topographic maps, 1; 100000 geological maps, 1; 55000 spatial images, Google earth satellite images, GPS, 20m altitude numerical models, Arcgis and Matlab softwares and laboratory parameters, including dry soil specific weight(γd), wet soil specific weight (γt), hydraulic conductivity, soil internal friction angle (φ), soil cohesion, and the porosity of the soil.

This research was completed through the fields, and empirical methods. Search steps are summarized as following: In the present study, 12 slopes of Javanrood, including 7 unstable slopes, and 5 Stable slopes, were chosen as the samples. All the alternatives of slope stability analyses were found using field studies, experimental studies, and topographic analysis of the landslides. The model utilized as a part of this research was the model of Talebi (2008) which was indeed, an amplified model of a physically-based model, being a blend of geometry model, hydrology model (perpetual condition), and unending slope stability theory. This model is used to study shallow landslides in slopes with different topography in regards to arrange shape (concave, convex, parallel), and profile curvature (concave, convex and direct). It considers the impacts of slope morphology on saturation storage of plan shape and length profile. At the end, with a reverse method of the safety coefficient decreased on the stability of the 1 and the critical rainfall was determined for each slope



3. Results and Discusion

The results showed that this model efficiently determine enough to critical precipitation. It was found that vulnerable slope slip less critically needed precipitation as the stable. According to the calculations, the amount of critical rainfalls for unstable landslides is less than 50 mm per day, although it is more than 100 mm / day for the stable. In addition, a safety factor in various periods return indicates that as the return period increases decreases the amount of stability slop. On the other hand, the return period increases for some instable slopes, will reduce their instability.

4.Conclusion

The objective of this study was to determine the critical rainfall in the occurrence of shallow landslides by the famous process-based model (Talebi 2008) in Javanrood. The results of factor values stability and critical rainfall of slopes study demonstrates that the model efficiency enough to identify critical rainfall. In accordance with the precise information about the soil and the hydrology of slope, can mathematically model the process as rainfall and water level changes on the land, and merge with penetration models and analysis of stability of slope. So, are able to assess the necessary rainfall for show landslide. According to the findings of significant rainfall in the region, it can be said that critical rainfall for the slopes of the region depend on the amount of the stability of the slope. Stability of slope is under the influence of morphological and hydrological factors and soil of them mechanical. So, the slopes with low safety factor needs less critical rainfall to define these landslides than stable ones.

کلیدواژه‌ها [English]

  • Critical Rainfall
  • Landslide Risk
  • Physically based Model
  • Safety Coefficient
اسفندیاری،ف.، رحیمی، م.، نویدفر، ا.مهرورز، ا.، 1399. ارزیابی حساسیت زمین‌لغزش با استفاده از روش‌های شبکه عصبی مصنوعی و الگوریتم ماشین بردار پشتیبان (مطالعه موردی: جاده‌ی حیران- استان اردبیل، پژوهش‌های ژئومورفولوژی کمی، سال نهم، شماره 3، صص 18-33
زارعی، پ.،طالبی ع.،علایی طالقانی،م.، 1394، بررسی علل وقوع لغزش‌های سطحی در منطقه جوانرود با استفاده از مدل فرایند محور، پژوهش‌های ژئومورفولوژی کمی، سال چهارم، شماره 2، صص:138-153
طالبی، ع، نفرزادگان، ع، ملکی نژاد، ح، 1388، مروری بر مدل سازی تجربی و فیزیکی زمین لغزش های ناشی از بارندگی، پژوهش های جغرافیای طبیعی، شماره 70، صص:64-45
جویباری،ج.، کاویان،ع.، مصفایی،ج.،1394، تاثیر خصوصیات بارش بر تغییرات مکانی و زمانی حرکت توده لغزشی منطقه توان در استان قزوین،جغرافیا و مخاطرات محیطی، شماره 16،صص:75-86
Alvioli, M.; Guzzetti, F.; Rossi, M., 2014. Scaling properties of rainfall induced landslides predicted by a physically based model. Geomorphology, 213, pp. 38–47.
Brunetti, M. T, Peruccacci, S. Rossi, M. Guzzetti, F., 2010. Rainfall thresholds for the possible occurrence of landslides in Italy, Nat. Hazards Earth Syst. Sci., 10, 447–458.
Cardinali, M., Galli, M., Guzzetti, F., 2006, Rainfall and Landslides in December 2004 in Southwestern Umbria, Italy, J Nat Haz Earth Sys Sci 6, pp. 237-260
Feranie a, S., Khoiriyah T. M., Jabbar, F.D. E, Tohari A.,2021. The Effect of Rainfall Intensity to Landslide Run-out Prediction and Velocity: A Parametric Study on LandslideZones in West JAVA-INDONESIA, Journal of Southwest JIAOTONG University., 56 (3), DOI10.35741/issn.0258-2724.56.3.45
Formetta, G., Capparelli, G., and Versace, P., 2016. Evaluating performance of simplified physically based models for shallow landslide susceptibility, Hydrol. Earth Syst. Sci., 20, pp.4585–4603, https://doi.org/10.5194/hess-20-4585-2016
Frattini, P.; Crosta, G.; Sosio, R., 2009.Approaches for defining thresholds and return periods for rainfall-triggered shallow landslides. Hydrol. Process., 23, pp.1444–1460.
Kayastha, P., 2006. Slope stability analysis using GIS on a regional scale. Master thesis in Physical Land Resources, Vrije Universiteit Brussel, pp.98.
Kang, K., Ponomarev, A., Zerkal, O., Huang, S., & Lin, Q. ,2019. Shallow Landslide Susceptibility Mapping in Sochi Ski-Jump Area Using GIS and Numerical Modelling. ISPRS Int. J. Geo Inf., 8, pp.148
Iadanza C, Trigila A, Napolitano F.,2016. Identification and characterization of rainfall events responsible for triggering of debris flows and shallow landslides. J Hydrol ,541, pp.230–245
Gariano, S.L.; Sarkar, R.; Dikshit, A.; Dorji, K.; Brunetti, M.T.; Peruccacci, S.; Melillo, M., 2019. Automatic calculation   of rainfall thresholds for landslide occurrence in Chukha Dzongkhag, Bhutan. Bull. Eng. Geol. Environ. 78, pp.4325–4332.
Giannecchini, R., 2006. Relationship between Rainfall and Shallow Landslides in the    Southern Apuan Alps (Italy), J Nat Hazards Earth Syst Sci 6, pp. 357-364
Hennrich, K.; M.J Crozier. 2004.A hillslope hydrology approach for catchment-scale slope stability analysis. Earth Surface Process. Landforms 29, pp.599-610. DOI 10.1002/esp.1054
Hsu, YC., Chang, YL., Chang, CH. et al. ,2018. Physical-based rainfall-triggered shallow landslide forecasting. Smart Water, 3, DOI: https://doi.org/10.1186/s40713-018-001-8
Martelloni, G., Segoni, S., Fanti, R., Catani, F., 2012. Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides, 9, pp.485–495.  
   Marin , R.,  Alvaro Mattos, J.,  Marin-Londono,J., 2020.Physically-based definition of rainfall thresholds for shallow landslides in a tropical mountain watershed of the Colombian Andes, 13th International Symposium on Landslides  ,  Landslides: Risk Assessment and Management   
Mirus, B.B.; Becker, R.E.; Baum, R.L.; Smith, J.B., 2018.Integrating real-time subsurface hydrologic monitoring with empirical rainfall thresholds to improve landslide early warning. Landslides, 15, pp. 1909–1919
Maturidi, A. M., Kasim, N., Abu Taib, K., Wan Azahar, W. N. A., 2021. Rainfall-Induced Landslide Thresholds Development by Considering Different Rainfall Parameters: A Review. Journal of Ecological Engineering, 22(10), pp. 85-97. https://doi.org/10.12911/22998993/142183
Passalacqua, R.V., Bovolenta, R., Federici, B., & Balestrero, D. ,2016. A Physical Model to Assess Landslide Susceptibility on Large Areas: Recent Developments and Next Improvements. Procedia Engineering, 158, 487-492.
Peres, D.J.; Cancelliere, A. )2016(. Estimating return period of landslide triggering by Monte Carlo simulation. J. Hydrol., 541, pp. 256–271.
Piciullo L, Calvello M, Cepeda JM., 2018.Territorial early warning systems for rainfall-induced landslides. Earth-Sci Rev 179: pp. 228–247
Salciarini, D., Godt, J. W., Savage, W. Z., Conversini, P., Baum, R. L., and Michael, J. A., 2006. Modeling regional initiation of rainfall- induced shallow landslides in the eastern Umbria Region of cen- tral Italy, Landslides, 3, 181–194,
Salvatici, T., Tofani, V., Rossi, G., D'Ambrosio, M., etal., 2018.Application of a physically based model to forecast shallow landslides at a regional scale, Nat. Hazards Earth Syst. Sci., 18,pp. 1919–1935, https://doi.org/10.5194/nhess-18-1919-2018,.
Salciarini D, Tamagnini C.,2015. Physical based rainfall thresholds for shallow landslide initiation at regional scales. Eng Geol Soc Territ 2: pp.1041–1044
Schilirò L, Esposito C, Mugnozza GS. ,2015. Evaluation of shallow landslide triggering scenarios through a physical-based approach: an example of application in the southern Messina area (North-Eastern Sicily, Italy). Nat Hazards Earth Syst Sci 3: pp.2975–3022
Segoni S, Rosi A, Rossi G, Catani F, Casagli N., 2014. Analyzing the relationship between rainfalls and landslides to define a mosaic of triggering thresholds for regional-scale warning systems. Nat Hazards Earth Syst Sci ,14, pp.2637–2648
Sidle, R. C., and H. Ochiai.,2006. Landslides: Processes, Prediction, and Land Use, WaterResour. Monogr. Ser., vol. 18, AGU, Washington, D. C.
Schilirò, L. Poueme Djueyep, G., Esposito, C., Scarascia Mugnozza, G., 2019. The   
Role of Initial Soil Conditions in Shallow LandslideTriggering: Insights from Physically    
Based Approaches, Geofluids, :14 pages, https://doi.org/10.1155/2019/2453786
Setyawan, A., Alina, A., Suprapto, D., Gernowo, R., etal. ,2021. Analysis slope stability      
based on physical properties   inCepoko Village, Indonesia, Cogent  Egineerin,8:1, DOI:                           10.1080/233119.2021.1940637
Talebi, A., Troch, P. A., Uijlenhoet, R.,2008. A steady-state analytical hillslope stability model for complex hillslopes. Hydrol. Process, Vol. 22, pp.546-553.
Van den Bout, B., Lombardo, L., Chiyang, M., van Westen, C. J., & Jetten, V. (2021). Physically-based catchment-scale prediction of slope failure volume and geometry.Engineering geology, 284, 1-16.https://doi.org/10.1016/j.enggeo.2020.105942
Wang, S., Zhang, K., van Beek, L. P. H., Tian, X., & Bogaard, T. A.,2020. Physically-based landslide prediction over a large region: Scaling low-resolution hydrological model results for high-resolution slope stability assessment. Environmental Modelling and
Wang WD, Xie CM, Du XG. ,2009. Landslides susceptibility mapping based on geographical information system, GuiZhou, South-West China. Environ Geol 58(1), pp.33–43
Yang, Z.; Cai, H.; Shao, W.; Huang, D.; Uchimura, T.; Lei, X.; Tian, H.; Qiao, J. ,2019.
Clarifying the hydrological mechanisms and thresholds for rainfall-induced landslide: In situ monitoring of big data to unsaturated slope stability analysis. Bull. Eng. Geol. Environ,78, pp.2139–2150.