شناسایی میزان زمین لغزش با استفاده از روش تداخل‌سنجی راداری (منطقه مورد مطالعه: شهرستان‌های اردل و کوهرنگ)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه جغرافیا و برنامه ریزی شهری، دانشگاه اصفهان.

2 استادیار گروه مطالعات ناحیه‌ای، پژوهشکده محیط زیست، جهاد دانشگاهی.

10.22034/gmpj.2022.320461.1326

چکیده

زمین لغزش به عنوان یک مخاطره طبیعی، همواره خسارات فراوانی ر ا به همراه داشته است. استفاده از تکنیک تداخل‌سنجی راداری به عنوان یک روش کارآمد در پایاش، پیش بینی، تحلیل، اندازه‌گیری میزان جایجایی و تعیین محل موقوع همواره مطرح بوده است. دراین پژوهش هدف بررسی، شناسایی و تعیین میزان جابجایی زمین لغزش در شهرستان اردل استان چهارمحال و بختیاری به عنوان یکی از حوضه های کوهستانی کشور می باشد با ایجاد 7 اینترفروگرام بهینه از 10 تصویر ماهواره Envisat مربوط به سال 2005، زمین‌لغزش‌های متعدد با میزان جابجایی از 2.8 تا 14 سانتیمتر در منطقه مورد مطالعه شناسایی گردید. در این روش با بهره گیری از اطلاعات فاز تصاویر مختلط SAR، مدل ارتفاعی زمین با دقت متر و مقدار جابه‌جایی‌ها و تغییرشکلهای پوسته زمین با دقت زیر سانتیمتر در پوششی پیوسته و وسیع ایجاد گردید. این نتایج بیانگر فعال بودن پهنه های لغزشی این منطقه از لحاظ حرکات دامنه ای است.

کلیدواژه‌ها


عنوان مقاله [English]

Landslide detection and monitoring using InSAR, Case study: Ardal and Koohrang Counties, Iran

نویسندگان [English]

  • Ali Sadeghi 1
  • Shahram Sharifi Hashjin 2
  • Mohammad Ali Rahimipour Sheikhani nejad 2
  • Habib Mahmoodi chenari 2
1 Assistant professor of remote sensing and GIS, Faculty of Geographical Sciences and Planning, University of Isfahan
2 Assistant professor of Regional Study, Environmental Research Institute, ACECR
چکیده [English]

Introduction

Landslide is a geological phenomenon that includes a wide range of ground movement, such as rock falls, deep failure of slopes and shallow debris flows. Landslides are caused by various natural and human causes. Due to its damages, landslide activities must be considered in various construction, industry and agricultural activities.

There are several methods for measuring the motion of the earth's crust caused by landslides. These include microgeodesic methods using accurate leveling and GPS observations. It will not be possible to repeat these measurements with this methods due to the high cost and difficulty. Therefore, it is not possible to provide timely and widly information on movements and displacements caused by landslides.

SAR interferometry technique is one of the newest remote sensing techniques that by processing radar images has provided the possibility of preparing earth crust movement maps on a large and continuous surface.





Methodology

One of the principal applications of the SAR technology is represented by the SAR interferometry (InSAR) technique. SAR interferometric techniques combine complex images recorded by antennas at different locations or at different tima to form interferograms which permit the determination of minute differences in the range (distance) to corresponding points of an image pair, on the sub-wavelength scale. By combining three radar images as two pairs of interferograms were able to separate topographic and dynamic effects and thus estimate the coseismic displacement field using radar data alone. The purpose of this study is to evaluate the capability and capability of radar interferometry technique in landslide detection. Radar interferometry processes and the results are presented in order to identify landslides in the study area (Koohrang county). Radar images taken by ASAR (Advanced SAR) sensor, which is one of the ENVISAT satellite sensors, are used for radar interferometry processing and interferogram creation.



Results and Discussion

Seven interferograms were formed on all pairs of available images. In three cases, fringes indicating landslides were observed. Considering the elimination of the topographic effect in the above interferograms and considering the fact that no earthquake has been recorded in this area during this period, so the fringes formed in this interferograms can be related to the occurrence of landslides. Considering the consistency of the observations of all three interrograms, the approximate average displacement rate has been calculated for each of these landslides.

Among the identified sites as landslides, only two cases are located in Chaharmahal and Bakhtiari province. One of them is located in the vicinity of Kofi village and another one is detected in Dehdeli village in Ardal county.



Conclusion

The approximate maximum ground displacement of landslides detected in the range of radar sensor visibility was estimated in centimeters. Extensive coverage of radar images in InSAR technique is one of the important advantages of this technique. Therefore, using this technique, make it is possible to identify active landslides, even in Inaccessible areas. Due to the presence of images in the archives of radar satellites such as ENVISAT satellites, it is possible to monitor landslides over the past years to the present.

One of the limitations in using the SAR interferometry technique is that all SAR images taken are not suitable for forming interferrogram. In fact, reducing the correlation of images such as Baseline Decorrelation and temporal decorrelation are important obstacles in using this technique in different situations.

Another limitation factor of this technique that can be considered is low spatial resolution of the resulting interrograms. This in turn causes the loss of small displacement ranges, in other words small landslides.

Accurate Global navigation satellite system point observations can be used as a complement to InSAR observations (continuously and extensively) in landslide modeling.

The following suggestions for using this technique in the study of landslides are presented.

A) Since it is possible to identify landslides and calculate the displacement vector for high-precision radar sensor vision using InSAR technique, use this technique to identify and monitor active landslides in order to complete the land database. Slips are suggested.

B) Conducting research to extract the dimensions and components of a landslide (including parameters such as canopy, peak, landslide, displaced mass, depletion zone, accumulation zone, etc.) from the results of InSAR technique to model landslide seems necessary It arrives.

C) GPS point and sight observations can be used as a complement to InSAR observations (continuously and on a large scale) in landslide modeling.

D) Due to the low spatial resolution of the displacement interrogram resulting from the use of the digital SRTM elevation model with a pixel size of 90 m, conduct research to use digital elevation models with better pixel size to reconstruct the topographic phase and finally obtain An interrogram requires better displacement with better spatial resolution. Undoubtedly, in such an interrogram, the probability of identifying landslides that have occurred in small areas will increase.



Keywords: Landslide, SAR Interferometry, ENVISAT, DEM, Interfrogram

کلیدواژه‌ها [English]

  • Landslide
  • SAR Interferometry
  • ENVISAT
  • DEM
  • Interfrogram
  1. فتاحی هیرش، محمد جواد ولدان زوج، محمد رضا مباشری ومریم دهقانی"ارائه الگوریتمی برای کاهش نویز فاز تداخل سنجی راداری مورد استفاده در تعیین میزان جابجاییهای پوسته زمین، بر اساس تبدیل موجک در حوزه مختلط"،مجله علمی-پژوهشی علوم زمین، زمستان 86، سال هفدهم، شماره 66 .

    فتاحی هیرش، بررسی InSAR و کاربردهای آن در مطالعه بلایای طبیعی، سمینار کارشناسی ارشد، دانشگاه صنعتی خواجه نصیرالدین طوسی، زمستان 1384.

    فتاحی هیرش، کاهش نویز اینترفروگرام­های راداری بر مبنای تحلیل­های فرکانس- مکان، پایان نامه کارشناسی ارشد، دانشگاه صنعتی خواجه نصیرالدین طوسی، شهریور 1386.

    Ahmad, F.H., Lozovskiy, V.F., & Castellane, R.M. (2005). Interferometric phase estimation through a feedback loop technique. Optics Communications, Vol. 251, pp 51-58.

    Avallone, A., Zollo, A., Birole, P., Delacourt, C., Beauducel, F. (1999). Subsidence of Campi Flegrei (Italy) detected by SAR interferometry. Geophisical Research Letters, Vol. 26, No. 15.

    Baran, I., Stewart, M.P., Kampes, B.M., Perski, Z., & Lilly, P. (2003). A Modification to the Goldstein Radar Interferogram Filter. IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No 9.

    Çakir, Z., Barak, A.A., Chabalier, J.B.D., Armijo, R., & Meyer, B. (2003). Kinematics of the November 12, 1999 (Mw=7.2) Düzce Earthquake Deduced from SAR Interferometry. Turkish Journal of Earth Sciences, Vol. 12, pp 105 118.

    Cakir, Z., Akoglu, A.M., Belabbes, S., Ergintav, S., & Meghraoui, M. (2005). Creeping along the Ismetpasa section of the North Anatolian fault (Western Turkey): Rate and extent from InSAR. Earth and Planetary Science Letters, Vol. 238, pp 225-234.

    Chen, C.W., & Zebker, H.A. (2002). Phase Unwrapping for Large SAR Interferograms: Statistical Segmentation and Generalized Network Models. IEEE Transaction on Geoscience and Remote Sensing, Vol. 40, No. 8.

    Dehghani, M., Valdan Zouj, M.J., & Abrishami Moghadam, H. (2004). An Efficient Byesian-Based algorithm for Speckle Noise Reduction of SAR Images Using Wavelet Transform. M.Sc. Thesis. K.N.Toosi University of Technology.

    Fodor, I.K., Kamath, C. (2001). Denoising Through Wavelet Shrinkage: An Empirical Study. Journal of Electronic Imaging.

    Froger, J.-L., Remy, D., Bonvalot, S., & Legrand, D. T(2007). Two scales of inflation at Lastarria-Cordon del TAzufreT volcanicTT complex, central Andes, revealed from ASAR-ENVISAT interferometric dataT. Earth and Planetary Science Letters, Vol. 255, Issues 1-2,  pp 148-163.

    FUK, K.LI., & Goldstein, R.M. (1990). Studies of Multibaseline Spaceborne Interferometric Synthetic Aperture Radars. IEEE Transactions on Geoscience and Remote Sensing, Vol. 28, No 1.

    Funning, G.J., Barke, R.M.D., Lamb, S.H., Minaya, E., Parsons, B., & Wright, T.J. (2005). The 1998 Aiquile, Bolivia earthquake: A seismically active fault revealed with InSAR. Earth and Planetary Science Letters, Vol. 232,  pp 39-49.

    Funning, G.J., Parsons, B., & Wright, T.J. (2005). Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery. Journal of Geophysical Research, Vol. 110.

    Gens, R. (2006). From SAR data to information: status, trends and future. ISPRS Mid-term symposium “Remote Sensing: From Pixels to Processes”, Ensechde, the Netherlands.

    Goldstein, M.R., & Werner, C.L. (1998). Radar Interferogram Filtering for geophysical applications. Geophisical Research Letters, Vol. 25, No. 21.

    Gonzalez, R.C., & Woods, R.E. (2002). Digital Image processing. 2nd ed. New York : Prentice-Hall.

    Graham, L.C. (1974). Synthetic Interferometer Radar for Topographic Mapping. Proceeding of the IEEE, Vol. 62, No 6.

    Hanssen, R..F. (2001). Radar Interferometry: Data interpretation and error analysis. Kluwer Acad, Netherlands.

    Hanssen, R..F. (2005). Satellite radar Interferometry for deformation monitoring: a priori assessment of feasibility and accuracy. International Journal of Applied Earth Observation and Geoinformation, Vol. 6, pp 253- 260.

    Henderson, F.M., & Lewis, A.J. (1998). Principles and Applications of Imaging Radar. Vol. 2 of Manual of Remote Sensing. John Wiley & Sons, Inc., New York, 3rd Edition.

    Kervyn, F., Ayub, S., Kajara, R., Kanza, E., & Temu, B. (2006). Evidence of recent faulting in the Rukwa rift (West Tanzania) based on radar interferometric DEMs. Journal of African Earth Sciences, Vol. 44, pp 151-168.

    Kingsbury, N.G. (2001). Complex wavelets for shift invariant analysis and filtering of signals. Applied and Computational Harmonic Analysis, pp.234-253.

    Lauknes, T.R. (2004). Long-Term Surface Deformation Mapping using Small-Baseline Differential SAR Interferograms. Thesis, University of Tromsø, Faculty of Science, Department of Physics.

    Lee, J.S., Papathanassiou, K.P., Ainsworth, T.L., Grunes, M.H., Reigber, A. (1998). A new technique for noise filtering of SAR interferometric phase images. IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, pp. 1456-1465.

    Lee, T.S. (1996). Image Representation Using 2D Gabor Wavelets”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, No. 10.

    Liu, G.X., Ding, X.L., Li, Z.L, Li, Z.w., Chen, Y.Q., & Yu, S.B. (2004). Pre- and Co-seismic ground deformations of the 1999 Chi-Chi, Taiwan earthquake, measured with SAR interferometry. Computers & Geosciences. Vol.30 , pp 333-343.

    Madsen, S.N., & Zebker, H.A. (1993). Topographic Mapping Using Radar Interferometry: Processing Techniques. IEEE Transactions on Geoscience and Remote Sensing, Vol. 31, No 1

    Mallat, S. (1998). A Wavelet Tour of Signal Processing. Academic Press.

    Martinez, C.L., & Fabergas, X. (2002). Modeling and Reduction of SAR Interferometric Phase Noise in the Wavelet Domain. IEEE Transactions on Geoscience and Remote Sensing, Vol. 40,No 12.

    Martinez, C.L., Canovas, X.F., & Chandra, M. (2001). SAR interferometric phase noise reduction using wavelet transform. Electronics Letters, Vol. 37, No. 10.

    Massonet, D., Rossi, M., Carmona, C., Adragna, F., Peltzae, G., Feigl, K. and Rabaun, T. (1993), “The displacement filed of the Landers Earthquake mapped by Rdar interferometry”, Nature, V.364, pp 138-142.

    Mastriani, M. (2006). New Wavelet-Based Superresolution Algorithm for Speckle Reduction in SAR Images. International Journal of Computer Science, Vol. 1, No 4.

    Núnez, J., Otazu, X., Fors, O., Prades, A., Palà, V., & Arbiol, R. (1999). Multiresolution-Based Image Fusion with Additive Wavelet Decomposition. IEEE Transaction on Geoscience and Remote Sensing, Vol. 37, No 3.

    Ochoa, N.A., & Silva-Moreno, A.A. (2007). Normalization and noise-reduction algorithm for fringe patterns. Optics Communications, Vol. 270, pp 161-168.

    Qian, K., Soon, S.H., & Asundi, A. (2003). Smoothing filters in phase-shifting Interferometry. Optics & Laser Technology, Vol. 35, pp 649-654.

    Qian, K., Soon, S.H., & Asundi, A. (2005). A simple phase unwrapping approach based on filtering by windowed Fourier transform. Optics & Laser Technology, Vol. 37, pp 458-462.

    Qian, K. (2007). Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations. Optics and Lasers in Engineering, Vol. 45, pp 304-317.

    Raucoules, D., Maisons, C., Carnec, C., Mouelic, S.L., King, C., & Hosford, S. (2003). Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert salt mine (France): Comparison with ground-based measurement. Remote Sensing of Environment, Vol. 88, Issue. 4 , pp 468-478.

    Sharav, A. Differential SAR Interferometry for crustal deformation study. Msc Thesis, ITC

    Zebker, H.A., & Goldstein, R.M. (1986). Topographic Mapping From Interferometric Synthetic Aperture Radar Observations. J. Geophys. Res., Vol. 91, 4993-4999.

    Zebker, H.A., & Villasenor ,J. (1992). Decorrelation in Interferometric Radar Echoes. IEEE Transactions on Geoscience and Remote Sensing,Vol. 30, No 5.

    Zebker, H.A., & Werner, C.L. (1994). Accuracy of Topographic Maps Derived from ERS-1 Interferometric Rdar. IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No 4.

    Zebker, H.A., Rosen, P., Richard, M., Goldstein, R.M., & Werner, C.L. (1994). On the derivation of coseismic displacement fields using differential radar interferometry: the Landers earthquake. J.Geophys. Res., Vol. 99,B10. 19617-19634.

    Zebker, H.A., Rosen, P.A., & Hensley, S. (1997). Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J. Geophys. Res., Vol. 102 , p 4993-4999.

    Zebker, H.A., & Lu, Y. (1998). Phase Unwrapping algorithms for radar interferometry: residue-cut , least squares , and synthesis algorithm. J.opt.soc.Am.A/ Vol. 15, No 3.

    Zebker, H.A., & Chen, K. (2005). Accurate Estimation of Correlation in InSAR Observations. IEEE Geoscience and Remote Sensing Letters, Vol. 2, No 2.

    Stramondo, S., Moro, M., Tolomei, C., Cinti, F.R., Doumaz, F. (2005) InSAR Surface displacement field and fault modeling for the 2003 Bam earthquake (southeastern Iran). Journal of Geodynamics Vol.40 , pp 347-353.

    Webley, P.W., Bingley, R.M., Dodson, A.H., Wadge, G., Waugh, S.J., & James, I.N. (2002). Atmospheric water vapour correction to InSAR surface motion measurements on mountains: results from a dense GPS network on Mount Etna. Physics and Chemistry of the Earth, Vol. 27, pp 363-370.

    Wright, T.J., Parsons, B.E., Jackson, J.A., Haynes, M., Fielding, E.J., England, P.C., Clarke, P.J. (1999). Source parameters of the 1 October 1995 Dinar (Turkey) earthquake from SAR interferometry and seismic bodywave modeling. Earth and Planetary Science Letters. Vol.172 , pp 23-37.

    Wright, T.J., Lu, Z., & Wicks, C. (2003). Source Model for the  6.7, 23 October 2002, Nenana Mountain Earthquake (Alaska) from InSAR. Geophysical Research Letters, Vol. 30, No. 18.

    Wright, T.J. (2002). Remote monitoring of the earthquake cycle using satellite radar interferometry. Phil. Trnas. R. Soc. Lond. A, 360, 2873-2888.

    Wright, T.J., Parsons, B.E., & Lu, Z. (2004). Toward mapping surface deformation in three dimensions using InSAR. Geophysical Research Letters, Vol. 31.

    Heresh Fattahi, M.J.Valadan Zouj, Maryam Dehghani, M.R. Mobasheri and M.R. Sahebi “Windowed Fourier Transform for Noise Reduction of SAR Interferograms ” IEEE Geoscience and Remote Sensing Ltters ,  Vol. 6, Issue. 3, 2009.

    H.Fattahi, M.R. Sahebi, M.J. Valdan Zoej and M.S. Moussavi, "Separation of Soil Surface Components of the Radar Signal Backscattered from Bare Soil", World Applied Sciences Journal 4(3): 377-383, 2008.

    Hersh Fattahi, M.J.Valadan Zouj, Maryam Dehghani,2006,“InSAR Application In Geohazards”, Map Middle East Conference, 26-29 March 2006, Dubai.

    H.Fattahi, M.J.Valadan Zouj, M.R.Mobasheri, M.Dehghani, 2007, “SAR Interferometric Phase Noise Reduction in Wavelet Domain”, ISPRS COMMISSION VII WG2&WG7, Conference on Information Extraction from SAR and Optical data, with Emphasis on Developing Countries, 16-18 May 2007, Istanbul, Turkey.

    1. Fattahi, M.J.Valadan Zouj, M.R. Mobasheri, M. Dehghani, 2007, “Radar Interferometric Phase Noise Reduction using Wavelet Transform”, Geomatic 86 Conference, May 2006, NCC, Tehran, Iran.