تحلیل نظم هندسی شبکه‌های زهکشی با استفاده از مدل توکوناگا و بعد ظرفیت مطالعه موردی: حوضه آبریز رودخانه بشار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد ژئومورفولوژی، گروه زمین شناسی دریایی، دانشگاه علوم و فنون دریایی خرمشهر، خرمشهر، ایران

2 استادیار ژئومورفولوژی، گروه زمین شناسی دریایی، دانشگاه علوم و فنون دریایی خرمشهر، خرمشهر، ایران

10.22034/gmpj.2022.334599.1339

چکیده

سازماندهی سلسله مراتبی و خود متشابه در شبکه‌های زهکشی از موضوعات مهم در ژئومورفولوژی و هیدرولوژی می‌باشد. از این رو در این مقاله با هدف بررسی انشعاب شبکه زهکشی حوضه بشار از مدل توکوناگا و بعد همبستگی فراکتالی استفاده شده است. رودخانه بشار یکی از زیرحوضه‌های کارون بزرگ است که در جنوب غرب کشور قرار دارد. در اولین گام شبکه آبراهه‌های حوضه بشار مطابق با روش توکوناگا به شکل درخت متناظر ترسیم و به کمک تابع همبستگی در نرم‌افزار Fractalys محاسبات فرکتالی دوبعدی پردازش گردید. مدل توکوناگا بر اساس فرض خود متشابه در درخت فرکتالی و ساختار شبکه جانبی خود متشابه توکوناگا ساخته شده است که توسط داده‌های شبکه‌های زهکشی پشتیبانی می-شود. این مدل با رتبه‌بندی شاخه‌های جانبی و ادغام جریان‌های انشعابات مختلف، ساختار انشعابی سیستم هورتون-استرالر را به تمام رده‌های آبراهه‌ها گسترش می‌دهد. نتایج محاسبات بعد فرکتال، نسبت انشعاب متوسط و مدت زمان اندک برای رسیدن به جریان دائمی را نشان می‌دهد. به طوریکه با افزایش مرتبه، میانگین طولی انشعابات رودخانه و میزان دبی افزایش یافته و پیک هیدروگراف رودخانه نیز به همان نسبت بیشتر خواهد بود؛ در نتیجه قدرت پیشروی رودخانه بیشتر می‌شود. به‌این‌ترتیب تعداد انشعابات رودخانه از مرتبه‌های گوناگون، همچنین سطح و طول این انشعابات از رابطه توانی و فرکتالی تبعیت می‌کنند. همچنین نتایج بعد فرکتال همبستگی بیانگر رفتار آشوبناکی نسبتاً بالای حوضه می‌باشد و می‌توان نتیجه گرفت که آشوب به‌وجود آمده در رتبه‌بندی حوضه هم تأثیر می‌گذارد و کوچک‌ترین تغییر در رده‌های این شبکه زهکشی منجر به تغییرات بزرگ در کل سیستم انشعاب آبراهه‌های حوضه‌ می‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of geometric order of drainage networks using Tokunaga model and capacity dimension (Case study: Bashar river basin)

نویسندگان [English]

  • zahra parvaneh 1
  • heeva elmizadeh 2
1 M.S. in Geomorphology, Faculty of marine natural resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
2 KMSU
چکیده [English]

Analysis of geometric order of drainage networks using Tokunaga model and capacity dimension

(Case study: Bashar river basin)

Extended Abstract

Introduction

The Tokunaga orders for drainage networks have been discussed extensively in the geomorphology and nicely reviewed. The branching structure of drainage networks has been actively studied since the 1980s, to address a broad range of geomorphological, hydrological, geological and environmental problems. The hierarchical organization and self-similarity in drainage networks have been topics of extensive research in geomorphology and hydrology starting with the pioneering work of Tokunaga in 1945. The self-similarity and fractal scaling in drainage networks have been topics of extensive research in hydrology and geomorphology. (Durighetto et al, 2020; Yan et al, 2018). Here we capitalize on a recently developed theory of random self-similar trees to elucidate the origin of Tokunaga model, Horton-Strahler ordering and basin fractal dimensions. Indeed, different basin properties may affect how drainage networks are morphologically structured such as climate, geology, soil composition, sediment, topography and vegetation. It allows one to quantitatively describe the connections between the river streams properties and various observed processes that operate on the river networks, as well as to perform comprehensive numerical simulations aimed at hypothesis testing and improving the understanding of the river streams dynamics. For example, the observed scaling relationships between geomorphic (e.g., drainage networks) and hydrologic (e.g., annual peak flow) variables have been frequently studied through ensemble simulations of river streams (Joshi & Kotlia, 2018;Yan et al, 2018; Liao et al, 2019). In this paper, the Tokunaga model and the fractal correlation dimension have been used to investigate the drainage network of Bashar basin.



Methodology

Bashar River is one of the sub-basins of Karoon watershed located in the southwest of the country. It is located in a mountainous area and it is snowing and raining. This river originates from the northwestern heights of Ardakan city in Fars province and flows through deep valleys in a northwesterly direction. The average rainfall of the basin is 858 mm. The average river discharge is 53.4 cubic meters per second and the maximum and minimum discharge are 106.5 and 18.55 cubic meters per second, respectively. Tokunaga model is built on the assumption of self-similarity in the side tributary structure, and an additional assumption of Tokunaga self-similarity, which is supported by data from drainage networks. The Tokunaga model extends the Horton-Strahler ordering by cataloging side-branching, that is the merging of streams of different orders; it is illustrated in (Fig. 1). At each level the primary branch, say 22, has binary branching, two 11 branches, and one 12 side branch. This simple branching structure can be extended to all orders. This is the basic concept of the Tokunaga side branching. Tokunaga ordering with side branching is illustrated in (Fig. 1). (Newman et al, 1997; Zanardo et al, 2013).



Fig. 1. Example of (a) Horton-Strahler ordering, and of (b) Tokunaga model.



Results and Discussion

Results show that analytical proof required no restrictions on the parameters a and c, other than that they be positive real numbers. In practice, however, parameters a and c should be close to 1 and 2, respectively, to predict a value of the bifurcation ratio for river streams between 3 and 5 as data suggests (fig. 2). Therefore, it is reasonable to expect some physical restrictions on parameters a and c, which is a topic for future research. That drainage networks on the average behave in much the same way as the Tokunaga model suggests that the parameters a and c contain information that is fundamental to the understanding of river streams evolution from geomorphological processes of erosion and runoff generation. Prediction of Tokunaga parameters a and c from physical processes is a very important topic for future research.





Fig. 1. Dependence of T (K) with constant values of a = 0.08 and c = 3.5

Conclusion

Tokunaga model is gaining increasing recognition in geomorphology and hydrology, because data supports several predictions of the model. We conclude by suggesting that the understanding of the Tokunaga side branching and self-similarity in river streams gained here can be extended to other hydrological and geomorphological processes. Important examples include fractal scaling and drainage networks. River streams satisfy fractal scaling laws in a variety of ways. It is concluded that the models developed in hydrology have direct applicability to the fundamental problems in geomorphology. For river streams the bifurcation ratio is fractal both in terms of the Tokunaga side branching and the Horton–Strahler primary branching.



Keywords: Capacity dimension, geometric order, Tokunaga model, drainage network, Bashar Basin.

کلیدواژه‌ها [English]

  • Capacity dimension
  • geometric order
  • Tokunaga model
  • drainage network
  • Bashar Basin
اصغری سراسکانرود، صیاد.، زینالی بتول.، ۱۳۹۴. بررسی الگوی پیچان رودی رودخانه گرمی‌چای استان آذربایجان شرقی با استفاده از روش‌های ژئومورفولوژی و تحلیل فراکتال. فصل‌نامه تحقیقات جغرافیایی.۳۰ (۴) :۷۹-۶۴ .
حسینی، علی، فتاحی، محمد هادی. 1400. بررسی مقایسه ای شاخص مورفولوژی زاویه مرکزی (با پارامترهای چند فراکتالی الگوی تکامل پیچان رودها با استفاده از روابط رگرسیونی (مطالعه موردی: رودخانه قره آغاج در استان فارس). پژوهش­های ژئومورفولوژی کمّی، 9(4)، 96-111.
دریکوند، سمیه، فرهپور، محمد مهدی. 1399. ارزیابی تکتونیک فعال نسبی حوضه خرم رود با استفاده از شاخص‌های مورفومتری و تحلیل الگوی فرکتالی (لرستان، شمال غرب کمربند زاگرس. پژوهش­های ژئومورفولوژی کمّی، 9(3)، 88-107.
سپهر، ع.، خسروی، ع.، عبدالله زاده، ز. 1395. رفتار فرکتالی و ارتباط آن با خصوصیات هیدرومورفومتری حوضه های آبریز دامنه ی شمالی. هیدروژئومورفولوژی، شماره 9، صص 20-1.
سلطانی، شکور،. قهرودی تالی، منیژه،. صدوق، سیدحسن. 1398. کاربرد سنجش از دور و مدل ریاضی فراکتال در بررسی رفتار و تغییرات لندفرم های ژئومورفولوژیکی رودخانه ارس. پژوهش­های ژئومورفولوژی کمّی، 7 (4)، 73-92.
علمیزاده، هیوا.، ماه پیکر، امید و سعادتمند، مریم.، 1397. بررسی نظریه‌ی فرکتال در ژئومورفولوژی رودخانه‌ای: مطالعه‌ی موردی زرینه‌رود. پژوهش­های ژئومورفولوژی کمّی، 3 (2)، 130-141.
علمیزاده هیوا، ماه پیکر امید. 1396. بررسی نظریه فرکتال در رودخانه زرینه‌رود با استفاده از روش شمارش جعبه‌ای. فضای جغرافیایی. ۱۷ (۵۹) :۲۷۰-۲۵۵.
Anwar, N., Tunas, I., Lasminto, U., 2019. A synthetic unit hydrograph model based on fractal characteristics of watersheds, International Journal of River Basin Management, 17:4, 465-477.
Bartolini, C., 2012. Is the morphogenetic role of tectonicsoveremphasized at times? Boll. Geof. Teor. Appl. 53(4), pp.459–470.
Buzsaki, G., Logothetis, N., Singer, W., 2013. Scaling brain size, keeping time: evolutionary preservation of brain rhythms. Neuron, (2013), 80:751–64.
Carke, J., Aher, P. D., Adinarayana, A., Gorantivar, J., 2015. Prioritization of Watersheds Using Multicriteria Evalution Through Fuzzy Analytical Hierarchy Process. Agricultural Engineering Int: CIGR Journal, 15(1). pp. 11-18.
Chavan, S. R., & Srinivas, V. V. (2015). Effect of DEM source on equivalent Horton–Strahler ratio based GIUH for catchments in two Indian river basins. Journal of Hydrology, 528, 463–489.
Durighetto, N., Vingiani, F., Bertassello, L. E., Camporese, M., & Botter, G. (2020). Intraseasonal Drainage Network Dynamics in a Headwater Catchment of the Italian Alps. Water Resources Research, 56(4).doi:10.1029/2019wr025563.
Elmizadeh, H., MahPeykar, O., Saadatmand, M., (2015). Investigation of Fractal Theory in River Geomorphology: A Case Study of Zarrineh River. Quantitative Geomorphological Research, 3(2), 130-141.
Fernandez-Martínez, M., Sanchez-Granero, M. A. 2015. How to calculate the Hausdorff dimension using fractal structures, Applied Mathematics and Computation, 264: 116–131.
Gale, S. J., Ibrahim, Z. Z., Lal, J., & Sicinilawa, U. B. T. (2019). Downstream fining in a megaclast-dominated fluvial system: The Sabeto River of western Viti Levu, Fiji. Geomorphology, 330, 151–162. doi:10.1016/j.geomorph.2019.01.009.
Golekar, R.B., Baride, M.V., Patil S.N., 2013. Morphometric analysis and hydrogeological implication: Anjaniand Jhiri river basin Maharashtra, India, Arch Appl Sci Res, 5(2): 33-41.
Gupta, V. K., and Mesa, O. J., 2014. Horton laws for hydraulic–geometric variables and their scaling exponents in self-similar Tokunaga river networks, Nonlinear Processes in Geophysics, 21: 1007-1025.
Horton, R.E., 1945. Erosional development of streams and their drainage basins: hydrographical approach to quantitative morphology. In: Christofoletti, A. (Ed.), Geomorfologı´a Fluvial. O Canal Fluvial, vol. 1. Ed. Blucher, Sao Paulo, Brazil, pp. 312 – 32.
Joshi, L. M., & Kotlia, B. S. (2018). Tectonic footprints and landscape evaluation along Kulur River valley, Kumaun Lesser Himalaya, India. Journal of Asian Earth Sciences, 162, 121–136. doi:10.1016/j.jseaes.2018.04.023.
Karam, A., Saberi, M., (2014). Calculation of fractal dimension in drainage basins and its relationship with some geomorphological characteristics of the basin (Case study: North Tehran catchments), Quantitative Geomorphological Research, 4(3), 153-167.
Khosravi, A., Sepehr, A., Abdollahzadeh, Z. (2017). Fractal Behavior and Its Relationship with Hydromorphometric Characteristics over Catchments of Binaloud Northern Hillslopes. Hydrogeomorphology, 3(9), 1-20.
Kovchegov, Y., and Zaliapin, I., (2018).Tokunaga self-similarity arises naturally from time invariance, Chaos: An Interdisciplinary, Journal of Nonlinear Science .Volume 28, Issue 4. 10.1063/1.5029937.
Kovchegov, Y., and Zaliapin, I., Foufoula-Georgiou, E. (2021). Critical Tokunaga model for river networks, Physical Review Journals. E 105, 014301.Utomo, K. S., Sutopo, Y., & Adi, M. H. (2019). Drainage Network System of Sekaran Village, Gunungpati District, Semarang City. Jurnal Teknik Sipil Dan Perencanaan, 21(1), 39–45. doi:10.15294/jtsp.v21i1.18301.
Liao, Z., Gu, X., Xie, J., Wang, X., & Chen, J. (2019). An integrated assessment of drainage system reconstruction based on a drainage network model. Environmental Science and Pollution Research, 26(26), 563–576.doi:10.1007/s11356-019-05280-1.
Mcconnell, M. and Gupta, M. (2008). A proof of the Horton law of stream numbers for the Tokunaga model of river networks, World Scientific Publishing Company, Vol. 16, No. 3, 227–233.
Meixner, T., Williams, Z.C., Pelletier, J.D., 2019. Self-affine fractal spatial and temporal variability of the San Pedro River, southern Arizona, American Geophysical Union. Journal of Geophysical Research: Earth Surface, 124, (6), p. 1540-1558.
Méndez-Quintas, E., Santonja, M., Pérez-González, A., Arnold, L. J., Demuro, M., & Duval, M. (2020). A multidisciplinary overview of the lower Miño River terrace system (NW Iberian Peninsula): A response to comments by Viveen et al. Quaternary International, 565, 129–135. doi:10.1016/j.quaint.2020.09.037.
Newman, W.I., Turcotte, D.L., Gabrielov, A.M., 1997. Fractal Trees with Side Veltri, M., Veltri, P., Maiolo, M., (1996), "On the fractal description of natural channelnetworks, Journal of Hydrology, 187: 137-144.
Parsons, M., & Thoms, M. C. (2018). From academic to applied: Operationalising resilience in river systems. Geomorphology, 305, 242–251. doi:10.1016/j.geomorph.2017.08.040.
Peckham, S.D., 1995. New Results for Self-Similar Trees with Applications to River Networks, Water Resources Research.31, 1023.
Rahmati, O., Tahmasebipour, N., Pourghasemi, H. (2015). Sub-watershed flooding prioritization using morphometric and correlation analysis (Case study: Golestan Watershed). Iranian journal of Ecohydrology, 2(2), 151-161. doi: 10.22059/ije.2015.56241.
Rahmizadegan, M., Merrikhpour, M. (2016). Determination of Basin’s Physiographic Characteristics Derived from the ASTER Digital Elevation Model (Case Study: The KabudRahang Plain, Hamedan, IRAN). Water Resources Engineering, 9(29), 103-124.
Rezaei, H., Jabbari Gharabagh, S. (2017). Noise Reduction Effect on Chaotic Analysis of Nazluchay River Flow. Water and Soil Science, 27(3), 239-250.
Rozo, G. A., Nogueira, C., Soto, C., 2014. Remote sensing-based analysis of the planform changes in the Upper Amazon River over, Journal of Arid Environments, period 19, pp425-439.
Soltani, S., ghohroudi tali, M., sadoogh, S. (2019). Application of remote sensing and fractal mathematical model in studying the behavior and variations of geomorphologic landforms of Aras river. Quantitative Geomorphological Research, 7(4), 73-92.
Sowpamilk, m., 2014. jaira, implication of fractal dimension on properties of rivers and river basins, Volume 5, issue12, December (2014), pp. 155-164.
Tokunaga, E., 1984. Ordering of divide segments and law of divide segment numbers. geomorphology. 5, 71–78.
Tunas, I., Anwar, N., Lasminto, U., 2016. Fractal Characteristic Analysis of Watershed as Variable of Synthetic Unit Hydrograph Model, The Open Civil Engineering Journal, 10(1):706-718 • October 2016 with 168 Reads.
Turcotte, D. L.,2007."Fractal and chaos in geology and geophysics", Cambridge University Press, Cambridge, pp.1- 398.
Yamani, M., Alaei Taleghani., M, Shahbazi, Sabrieh. (2012). Morphotectonic and its impact on the changes in bed and pattern. Journal of Geography and Regional Development, 9(2).
Yan, Y., Tang, J., & Pilesjö, P. (2018). A combined algorithm for automated drainage network extraction from digital elevation models. Hydrological Processes, 32(10), 1322–1333. doi:10.1002/hyp.11479.
Yang, H., and Shi, C.h., 2017. The Fractal Characteristics of Drainage Networks and Erosion Evolution Stagesof Ten Kongduis in the Upper Reaches of the Yellow River, ChinaSource: Journal of Resources and Ecology, 8(2):165-173.
Yang, H., Yang, X., Huang, W., Li, A., Hu, Z., Huang, X., & Yang, H. (2020). 10Be and OSL dating of Pleistocene fluvial terraces along the Hongshuiba River: Constraints on tectonic and climatic drivers for fluvial downcutting across the NE Tibetan Plateau margin, China. Geomorphology, 348, 106884. doi:10.1016/j.geomorph.2019.106884.
Yu, F., Serena C., Kyungrock, P., Gavan, M.G., Suresh, P., Rao, C., Montanari, A., Jawitz, JW., 2018. Globally Universal Fractal Pattern of Human Settlements in River Networks. American Geophysical Union. pp:1-20.
Wang, Z., Zhou, F., Cao, H., 2017. The Fractal Characteristics of the River Network Based on Horton Law in the Landslides Area. International Conference on Civil Engineering and Rock Engineering. Pp:680-684.
Zakir Mushfeq, M., Anis Hosseini, Massoud. (2013). Analysis and Prediction of the Kashkan River Flow using Chaos Theory. Journal of Hydraulics, 8(3), 45-61.
Zanardo, S., I. Zaliapin, and E. Foufoula-Georgiou (2013), Are American rivers Tokunaga self-similar? New results on fluvial network topology and its climatic dependence, Journal of Geophysical Research Atmospheres 118 (1):166-183.
Zhou, Z., Zhihui, N., Lichun, W., Liang, Z., 2017. Fractal research of transverse sections of a long river channel below a dam, Environment Earth Scince, 76:553, pp: 11