شناسایی دامنه های مستعد زمین لغزش و طبقه بندی انواع آن با استفاده از مدل رگرسیون لجستیک و منطق فازی ( مطالعه موردی: حوضه قهرمانلو استان خراسان شمالی)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد ژئومورفولوژی، گروه جغرافیا، دانشکده ادبیات و علوم انسانی دکترعلی شریعتی، دانشگاه فردوسی مشهد، مشهد.

2 دانشیار گروه جغرافیا، دانشکده ادبیات و علوم انسانی دکتر علی شریعتی، دانشگاه فردوسی مشهد، مشهد.

3 مدرس مدعو گروه جغرافیا، دانشکده ادبیات و علوم انسانی دکتر علی شریعتی، دانشگاه فردوسی مشهد، مشهد.

10.22034/gmpj.2022.336132.1343

چکیده

در حوضه قهرمانلو به علت شرایط خاص خاک‌شناسی، آب وهوایی و تکتونیکی زمین لغزش‌های زیادی رخ داده است که خسارت‌های زیادی به زمین‌های کشاورزی، خطوط ارتباطی و نواحی روستایی وارد کرده است. در این پژوهش با استفاده از مدل رگرسیون لجستیک و منطق فازی نقشه شدت خطر زمین‌لغزش ها تهیه گردید و انواع آن بدست آمد بدین صورت که با استفاده از 12 معیار شامل شیب، جهت‌شیب، ارتفاع، تراکم شبکه‌آبراهه، فاصله از شبکه‌آبراهه، خطوط‌ارتباطی، زمین‌شناسی، شاخص‌رطوبت، بارش، کاربری‌اراضی، تراکم پوشش‌گیاهی و شاخص‌ توپوگرافی‌زمین به عنوان متغیرمستقل و موقعیت زمین‌لغزش‌های موجود که با استفاده از مطالعات میدانی و دورسنجی مجموعا 28 مورد شناسایی شده است، به عنوان متغیر وابسته به مدل معرفی گردید. نتایج مدل با دقت Pseudo R2 برابر با 2311/0 و شاخص ROC برابر با 9134/0، بیانگر این است که متغیرهای فاصله از آبراهه، کاربری اراضی، بارندگی و فاصله ازجاده در بروز زمین لغزش در حوضه قهرمانلو موثر می باشند و همچنین از کل مساحت 10241 هکتاری حوضه، میزان 310 هکتار یعنی 3 درصد و 3/216 هکتار به میزان 11/2 درصد، به ترتیب دارای پتانسیل زمین لغزش خیلی بالا و بالا می‌باشند، همچنین 5/66درصد ازحوضه به علت قرارگیری در ارتفاعات زیاد و قرارگیری در موقعیت جهات‌غربی دارای دامنه‌هایی با پتانسیل خیلی‌کم برای زمین‌لغزش می‌باشند همچنین 11 مورد از زمین‌لغزش ها از نوع انتقالی، 2 مورد انتقالی کم عمق و 15 مورد از پهنه‌های پیش‌بینی شده به صورت چرخشی می باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Identifying landslide prone slopes and classification of its types using logistic regression model and fuzzy logic (Case study: Ghahremanlou Catchment, North Khorasan Province)

نویسندگان [English]

  • Shiva Golipour 1
  • Seyed Reza Hosseinzadeh 2
  • maliheh pourali 3
1 University ferdowsi Mashhad
2 Dep. of Geography, Faculty of Letters and Humanities, Ferdowsi University of Mashhad, Mashhad, Iran
3 Department of Physical Geography, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

Landslides are among the most destructive natural phenomena, and their harmful effects have also increased as a result of increased human occupation and activities in nature. When the resistance force is less than the force of the material weight on the slope due to the sheer force of the soil, landslides would occur with the least intervention of secondary factors including heavy rain, earthquake, etc. Due to the special conditions of geology, climate, tectonics, etc., many landslides occurred in Ghahremanlou catchment area located in North Khorasan province, resulted in a lot of damage to the farmlands, communication lines and rural settlements.

The study aimed to identify landslide-prone slopes and classify landslide types in Ghahremanlou catchment using a logistic regression model and fuzzy logic to investigate and identify the factors affecting landslides in this catchment and to draw a landslide sensitivity zoning map. Landslide mapping and identification map can be used as an efficient method in planning to reduce the risks and damages caused by landslides.

Ghahremanlou catchment area is located in the southwest of Farooj city, located between longitudes 57 degrees and 55 minutes to 58 degrees and 4 minutes east and between latitudes 37 degrees and 2 minutes to 37 degrees and 13 minutes.The villages of Mayvan, Chokanlu, Ostad, Khosravieh, Hasht Sorkh, and Ghahremanlou are located within this catchment.

The area is located between the geological formations of Kopehdagh in the north and Aladagh in the south and has Sandstone, granite and shale rocks. The slopes are composed of Orbitolina limestones from the Cretaceous geological period (with the Tirgan Formation) and red marls and Neogene sandstones. In this study, landslides in the area were determined by field surveys and Google Earth images. Then, using a digital model of a 30 m altitude SRTM sensor, slope map, slope direction, topography, and hydrographic network of the catchment were calculated.

A road network map has been prepared from OSM and Google Earth data by digitizing the main road lines and side roads in the study area. The average annual rainfall map is extracted from meteorological data of North Khorasan province and its map is prepared based on the IDW interpolation model. To determine the vegetation of the region, the normalized vegetation difference index algorithm was used. Using the Wetness index, from the Landsat 8 satellite image for 1399, the OLI sensor of the humidity index of Ghahramanloo catchment has been calculated.

Then, a fuzzy model and logistic regression were used to determine the effect of each of these parameters and effective criteria in landslides.

In this study, 28 slopes in which landslides occurred were identified. Then 12 independent variables have been calculated including slope, slope direction, etc. After preparation using the fuzzy logic model (linear normalization functions (straight and inverse), norm and Gaussian between zero and one) entered the logistic regression model. Then the position of landslides in the region as a dependent variable, zero or one (boolean) was prepared and entered into the logistic regression model. After introducing independent variables related to the logistic regression model, 70% of the pixels with a landslide (in 28 identified positions) were introduced to the model as a training sample and 30% of it as a model for checking the accuracy of the model in the Pseudo index. R2 and ROC were used. The results are obtained by identifying areas with landslide potential using the Natural Breaks function and considering the same variance and scatter of data in each class. These results show that the most effective causes of landslides in the region are distance from the waterway, land use, rainfall, and distance from the road.

On the other hand, the farther they are from the communication lines, the lower the impact on landslides. Also, in the land-use variable (according to how it is normalized), barren lands have less effect than rangelands, and also increasing rainfall has a positive effect on the occurrence of landslides in the catchment. In a way that with increasing rainfall, the occurrence of landslides also increases. To evaluate the accuracy of the regression model in this research, the value of Pseudo R2 equal to 0.2311 and ROC equal to 0.9134 indicates a good fit of logistic regression and its appropriate descriptive capability. Based on the landslide classification models by Kruden and Warrens, 1996, the prediction of landslides is classified using a logistic regression model, and landslides in the region into rotational, shallow, and transitional types.

The results of the existing landslides indicates that out of the total area of 10241 hectares in Ghahremanlou catchment, 310 hectares, i.e., 3%, and 216.3 hectares, i.e., 2.11%, have very high landslide potential, respectively. And 950.50 hectares of the area, i.e., 9.28%, has a medium landslide potential. On the other hand, 66.5% of the catchment is located in the western direction (west, northwest, and southwest) due to its location at high altitudes and steep slopes, with very little potential for landslides.

کلیدواژه‌ها [English]

  • Ghahremanlou Catchment
  • logistic regression
  • fuzzy logic
  • landslide
  • GIS
اشرفی فینی، ز.، روستایی، ش.، مختاری کشکی، د.، 1399،  پهنه بندی خطر زمین­لغزش در حوضه آبریز طالقان با استفاده از شاخص آنتروپی شانون، جغرافیا و برنامه­ریزی، دوره  24، شماره 71، صص 150-125.
پورطاهری، م..، 1389، کاربرد روش­های تصیمم­گیری جند شاخصه در جغرافیا، انتشارات سمت.
سوچلمایی، ف.، 1393، پهنه­بندی حساسیت زمین­لغزش با استفاده از تئوری بیزین و منطق­فازی (مطالعه موردی: بخش مرکزی حوزه آبخیز نکارود)، دانشگاه علوم کشاورزی و منابع طبیعی ساری، دانشکده منابع طبیعی، پایان نامه کارشناسی ارشد.
سیفی، س.، 1395، ارزیابی عوامل مؤثر در پهنه­بندی خطر زمین لغزش با استفاده از مدل رگرسیون لجستیک در محیط GIS (مطالعه­ی موردی: حوضه­ی آبریز قوشقوان)، دانشگاه تبریز، دانشکده جغرافیا و برنامه­ریزی، پایان­نامه کارشناسی ارشد.
کریمی، م.، نجفی، ا.، 1391، ارزیابی خطر زمین‌لغزش با استفاده از مدل ترکیبی AHP-FUZZY در راستای توسعه و امنیت شهری (مطالعه موردی: منطقه یک کلان‌شهر تهران). پژوهش‌های فرسایش محیطی، دوره ۲، صص: 97-95.
کلارستاقی، ع.، گرایی، پ.، 1386، مدل سازی خطر وقوع زمین لغزش ها با استفاده از سیستم تصمیم گیری چند معیاره در حوضه آبخیز واستان-استان مازندران، فصلنامه تحقیقات جغرافیایی، 87 (4)، صص: 49-68. 
مدنی، ح.، شفیقی، س.، 1384، زمین­شناسی­عمومی. انتشارات دانشگاه صنعتی امیرکبیر. چاپ بیست و دوم.
مجرد، ز.، جمال­آبادی، ج.، شفیعی، ن.، زنگنه­اسدی، م.ع.، 1398، پهنه بندی خطر زمین لغزش با استفاده از روش های وزن دهی اطلاعاتی و تراکم سطح در حوضه آبخز قوچان – شیروان، نشریه تحلیل فضایی مخاطرات محیطی، سال هفتم، شماره 3.
یانسری، ز.، حسین زاده، ر.، کاویان، ع.، پورقاسمی، ح.، 1397، مطالعۀ حساسیت به وقوع زمین­لغزش درحوضه آبخیز چهاردانگه با تأکید بر مقایسه تطبیقی روشهای ارزیابی، دانشگاه فردوسی مشهد، دانشکده ادبیات و علوم انسانی دکتر علی شریعتی، گروه جغرافیا.
Bradinoni, F., Slaymaker, O., Hassan, M.A., 2003. Landslide inventory in a rugged forested watershed: a comparison between air-photo and field survey data. Geomorphology, 54 (3-4), 179-196.
Can, J.E., Chau, K. T., Chan, J.E., 2005.Regional bias of landslide data in generating susceptibility maps using logistic regression for Hong Kong Island. Landslides, 280-290.
Chen H., Pontius Jr, R.G., 2013. Diagnostic tools to evaluate a spatial land change projection along a gradient of an explanatory variable. Landscape Ecology, 25 (9), 1319-1331.
Caldwell, J., and Ram, Y. M., 1999. Mathematical modelling: concepts and case studies. Dordrecht, Netherlands, Kluwer Academic Publishers., 173
Cruden, D.M., 1991. A simple definition of a landslide. Bull. Int. Assoc. Eng. Geol.—Bull. l’Association Int. Géologie l’Ingénieur, 43, 27–29.
Dai, F.C., Lee, C.F., 2002. Landslide characteristics and slope instability modeling using GIS Lantau Island, Hong Kong. Geomorphology, 42, 213-238.
Esposito, G.; Carabella C.; Paglia G.; Miccadei E. 2021. Relationships between morphostructural/geological framework and landslide types: Historical landslides in the hilly piedmont area of Abruzzo Region (Central Italy),Land, 10, 287.
Gopta, N., Stark, C.P., Hao-Tsu, C., Jiun-chuan., 2003. Supply and removel of sediment in a landslide-dominated mountain belt: Centeral Rang, Taiwan. Geology, 108.
Harp, E.L., Jibson, R.L., 1995. Inventory of Landslides Tiggered by the 1994 Northridge, California Earthquake. U.S. Geological Survey Open File Report, 95- 213.
Hong, H., Pourghasemi, H. R., & Pourtaghi, Z. S., 2016. Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology, 259, 105-118.
Lee, S., Ryu. J. H., Kim, L. S., 2007, Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea, Landslide, 4:327-338.
Lee, H., Choi, J., Oh, H., Lee, C., Lee, S., 2012. Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Engineering Geology, 124, 12-23.
Wang, Q., Li, W., Wu, Y., Pei, Y., & Xie, P., 2016. Application of statistical index and index of entropy methods to landslide susceptibility assessment in Gongliu (Xinjiang, China). Environmental Earth Sciences, 75(7), 599.
Komac, M., 2006, A landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in perialpine Slovenia. Geological Survey of Lovenia, Geomorphology, 74, 17–28.
Kopecký, M., Macek, M., Wild, J., 2021. Topographic Wetness Index calculation guidelines, Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic based on measured soil moisture and plant species composition, Zámek 1, CZ-252 43.
Lee, S., Sambath, T., 2006. Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. The journal of Environmental Geology, 50, 847-855.
Miccadei, E.; Carabella, C.; Paglia, G., 2022, Landslide Hazard and Environment Risk Assessment, Land, 11, 428. https://doi.org/ 10.3390/land11030428
Materazzi, M.; Bufalini, M.; Gentilucci, M.; Pambianchi, G.; Aringoli, D.; Farabollini, P., 2021, Landslide hazard assessment in a monoclinal setting (Central Italy): Numerical vs. geomorphological approach. Land, 10, 624.
Regmi, N. R et al., 2010. Assessing susceptibility to landslides: Using models to understand observed changes in slopes. Geomorphology, 122, pp.25–38.
Turner, A.K. 2018. Social and environmental impacts of landslides. Innov. Infrastruct. Solut, 3, 70.
Shahabi, H., Hashim, M., &  Ahmad , B. B., 2015. Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio, logistic regression, and fuzzy logic.
Varnes, D.J., 1978. Slope movement types and processes. In Landslides, Analysis and Control; Schuster, R.L., Krizek, R.J., Eds.; National Academy of Sciences: Washington, DC, USA, Volume Special Re, pp. 11–33, ISBN 0360859X.
Yalcheen, A., 2011. “GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations,” Catena, 72: pp. 1–12.
Zhou, S.; Zhou, S.; Tan, X., 2020. Nationwide susceptibility mapping of landslides in Kenya using the fuzzy analytic hierarchy process model. Land, 9, 535.