کانی شناسی رسوبات سطوح مختلف ژئومورفیک پلایای سبزوار با توجه به تغییر و تحولات اواخر هولوسن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ژئومورفولوژی گروه جغرافیا، دانشکده ادبیات و علوم انسانی، دانشگاه فردوسی مشهد.

2 استادیار گروه مدیریت مناطق خشک و بیابانی، دانشکده منابع طبیعی و محیط زیست، دانشگاه فردوسی مشهد.

3 دانشیار گروه زمین شناسی، دانشکده علوم پایه، دانشگاه فردوسی مشهد.

چکیده

پلایا از عوارض مهم ژئومورفیک کواترنری مناطق خشک و نیمه خشک در ایران است که شناخت ویژگی‌های آن به تعیین اقلیم و محیط گذشته کمک فراوان می‌کند. هدف از انجام این تحقیق شناسایی و منشاءیابی کانی های تشکیل دهنده سطوح مختلف ژئومورفیک پلایای سبزوار واقع در شمال شرق ایران با توجه به تغییرات آب و هوایی اواخر هولوسن در منطقه می باشد .بدین منظور 12 نمونه رسوب از سطح و عمق رخساره های ژئومورفیک پلایـای مـذکور جهت مطالعات رسوب شناسی و ژئوشیمی رسوبی برداشت شد. نتایج آزمایشات فیزیکی_شیمیائی، پراش اشعه ایکس و میکروسکوپ الکترونی روبشی نشان دهنده حضور کانی های آواری و تبخیری همچون کوارتز، آلبیت، اسمکتیت، پالیگورسکیت، سپیولیت، کلسیت، ژیپس و هالیت در منطقه می باشد که در رخساره های رسی متراکم- سخت، رخساره رسی پف کرده و رخساره رسی - نمکی پلایا شناسایی شده اند. روند شکل گیری این کانی ها از عمق به سطح و از شرق به غرب پلایا الگوی رسوب گذاری خاصی را نشان می‌دهد که بیانگر نوسانات اقلیمی هولوسن پایانی در این پلایا می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Mineralogy of Sediments of Different Geomorphic Surfaces of Sabzevar Playa in Regard to the Late-Holocene Changes

نویسندگان [English]

  • maliheh Pourali 1
  • Adel Sepehr 2
  • M.H Mahmoudy Gharai 3
1 Ferdowsi University of Mashhad
2 mashahd university
3 Geology Department, Ferdowsi University of Mashhad
چکیده [English]

Introduction
Playa is one of the important geomorphology types in arid and semi-arid regions and it is sensitive to climatic changes. Composition of sediments is varying in playa and sometimes, it can reflect the past climate. Recognition of the minerals and origin of sediments in these regions has a determinative role in geomorphology of playa, for example, existence of paligorskite and sepiolite clay minerals which are formed and become sustainable in alkalic environments such as playa and sediments of arid regions, and they are recognized as an indicator of the past environment and a sign of evaporation conditions in lake sediments. Sabzevar playa, as an old lake sedimentary environment in the north east of Iran, is important from regional and environmental aspects, and recognition of its constituting sediments can significantly help the recognition of the past climate and the current conditions of the playa. This research is aimed at recognizing the minerals constituting different geomorphic surfaces of Sabzecar playa and studying the late Holocene climate in the region by mineralogy of the sediments.
Materials and methods
In this research, by using the visual data of satellite images and geological maps of the region with 1:100000 scale, the border of playa was determined and its different geomorphic surfaces were recognized. In the field studies performed during summer, 12 samples of surface sediments and deep sediments were by handy auger along the playa geomorphic areas including clay-flat areas, puffy ground clay area, and salt-clay area, and the location of sampling points was recorded by GPS. Then, sedimentary physical and geochemical analyses were done of the samples. Distribution of the particles size was done after screening by using a 2-mm screen and by laser separation method and statistical criteria of the sediments were done. Analysis and measurement of Potential of hydrogen (pH) and Electrical Conductivity (EC) was done in 1:1 ratio of water to sediment. Calcium Carbonate Equivalent (CCE) percentage of the samples was determined by volumetric method. Mineralogy of the sediments was measured by X-ray diffraction device in the range of 3 to 60 degrees (ϴ2), and for more detailed study of clay minerals, 5 samples of dry intact deposits were studied by scanning electron microscopy.
Discussion and conclusion
In Sabzevar playa, 3 geomorphologic facies including clay-flat facies, puffy ground-clay facies, and salt-clay facies were recognized which have been formed affected by the surrounding lithology of rocky outcrops, the existing evaporating layers, and the special topography of the playa. Playa (clay-flat facies) has the lowest electrical conductivity which suggests the low level of underground waters in this area. The dominating mineral quartz of this facies is at the surface which suggests the intense wind deposition as a result of increased aridity of the environment. High amounts of sand particles at the surface of this facies approve this assumption. Smectite clay mineral exists at the deep parts of this facies in an autogenic manner which suggests the weak drainage and increased aridity. The central part of the playa (puffy ground-clay facies) has been formed caused by high water table and salty water and lack of seasonal overflows. Low levels of gypsum aggregation at the surface levels and high levels of gypsum aggregation ar the deep parts approve the existence of puffy ground-clay surface. Decreased calcite and increased gypsum and sepiolite in the deep parts and existence of paligorskite can be probably caused by more arid climate and salt changes in this facies. The west part of the playa (salt-clay facies) is the lowest area of the region and it is covered by halite evaporating mineral and clay layers, and it shows the dominating evaporation process. Surface evaporation through capillary force cause upward movement of underground waters and creation of salt layers. The surface of this facies has a high level of electrical conductivity in the region. At the deep parts of this facies, we can see paligorskite and sepiolite fiber minerals in an autogenic form which suggest the dominance of arid and alkaic environment. Distribution of particles size show the highest percentage of caly in this facies which suggests the lowest average of particle size and the lowest amount of environmental energy at the time of deposition.
Conclusion
The results of this research suggest the existence of clastic and evaporating minerals such as quartz, paligorskite, calcite, and gypsum in Sabzevar playa. First carbonate minerals (calcite) and then, sulfate minerals (gypsum) have deposited and at the end, chlorides (halite) have deposited. The size distribution chart of particles has the average of 46.20 µm at the surface and 23.98 µm at the deep parts and the average kurtosis of 8.56 µm at the surface and 5.29 µm at the deep parts and the skewness is towards the small particles. The average values of EC and pH in all the deep samples are less than surface samples and it suggests more salt in the surface water. Fiber clay minerals such as paligorskite and sepiolite in playa have been formed in the deep part in an autogenic way and in the surface in an allogenic way, and it suggests the dominance of arid climate of the region in past and present time. Also, surface deposits suggest wind deposition in a quite arid environment and deep deposits suggest deposition in a windy alluvial environment.

کلیدواژه‌ها [English]

  • Playa of Sabzevar
  • Geochemistry
  • Evaporated Mineral
  • Holocene
  1. بیات، امید؛ کریم زاده، حمیدرضا؛ خادمی، حسین، 1390، کانی­های رسی در دو خاک قدیمی سطوح ژئومرفیک یک مخروطه افکنه در شرق اصفهان، مجله بلورشناسی و کانی شناسی ایران، جلد1، شماره 19، صص 58-45.

    پدرامی، منوچهر؛ 1372، گزارش زمین شناسی کواترنر و پارینه اقلیم منطقه اراک-کویر میقان: سازمان زمین‌شناسی کشور، ص 39

    خرمالی، فرهاد؛ ابطحی؛ علی، تازیکه، حسین، 1391، کانیهای رسی (ویژگی ها و شناسایی)، انتشارات دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان.

    عبادی، لیلا؛ رحیم پور بناب، حسین، 1393، کانی شناسی تبخیری های توالی کواترنری و بررسی تحولات شیمیایی شورابه در پلایای میقان اراک: مجله بلورشناسی و کانی شناسی ایران، شماره  1، ص 69-41.

    محمدی، علی؛ 1389، رسوب شناسی و ژئوشیمی نهشته‌های پلایای جازموریان، فصلنامه علمی- پژوهشی خشک بوم، دوره اول، شماره 1.

    Botha, G.A. and Hughes, J.C., 1992. Pedogenic palygorskite and dolomite in a late Neogene sedimentary succession, northwestern Transvaal, South Africa. Geoderma, 53(1-2), pp.139-154

    Cohen, T.J., Jansen, J.D., Gliganic, L.A., Larsen, J.R., Nanson, G.C., May, J.H., Jones, B.G.,Price,D.M.,2015.Hydrological transformation coincided with megafaunalextinction in central Australia. Geology, 43, 195-198.

    Cook,R.Warren,A.Goudie,A., 2002. Desert eomorphology.UCL press

    Cooke, R.U., and A. Warren., 1973. Geomorphology in deserts: University of California Press, Berkeley, pp. 374.

    Cooke, R.U., Cooke, R.U. and Warren, A., 1973. Geomorphology in deserts. Univ of California Press.

    Davis, C.A. and Smith, L.M., 1998. Ecology and management of migrant shorebirds in the Playa Lakes Region of Texas. Wildlife Monographs, pp.3-45.

    December 1984.  Cite as Great Salt Lake, and precursors, Utah: The last 30,000 years, pp 321–334.

    Dixon, J.B. and Weed, S.B., 1989. Minerals in Soil Environments. 2nd Edition, Soil Science Society of America, Madison.

    Dixon, j.c.2016. arid soil, patterned ground and desert pavements. Univer. Arkansas.

    Farpoor, M.H., Neyestani, M., Eghbal, M.K. and Borujeni, I.E., 2012. Soil–geomorphology relationships in Sirjan playa, south central Iran. Geomorphology, 138(1), pp.223-230.

    Farpor, M., Khademi, H. and Karimian, M., 2002. Genesis and distribution of palygorskite and associated clay minerals in Rafsanjan soils on diferent geomorphic surfaces. Iran Agricultural Research, 21(1), pp.39-60.

    Folk, R.L., 1980. Petrology of sedimentary rocks. Hemphill Publishing Company.

    Gansser, A., Gansser, A., Huber, H., Gansser, A., Geologist, S., Gansser, A. and Géologue, S., 1962. Geological observations in the central Elburz, Iran. Verlag nicht ermittelbar.

    Gansser, A.N., 1955, January. 2. New Aspects of the Geology in Central Iran (Iran). In 4th World Petroleum Congress. World Petroleum Congress.

    Geological Survey of Iran. 2005. Geological sheets of 7262 (Abbas–Abad), 7362 (Davarzan), 7462 (Bashtin), and 7562 (Sabzevar), Scale 1:100,000.

    Geological Survey of Iran. 2016. Digital elevation model data, Scaled at ~10 m pixel size.

    Goudie, A.S., 2013. Arid and semi-arid geomorphology. Cambridge university press.

    Halliday, F., 1995. Islam and the Myth of Confrontation: Religion and Politics in the Middle East (London: IB Tauris, 1995). Two Hours That Shook the World: September II, 200I-Causes and Consequences (London: Saqi, 2002).

    Harrison, S.P., 1993. Late Quaternary lake-level changes and climates of Australia. Quaternary Science Reviews, 12(4), pp.211-231.

    HUBER, H., 1960. The quaternary deposits of the Darya-e-Namak, Central Iran. Iran oil company. geology note, 51.

    Hughen, K.A., Overpeck, J.T., Peterson, L.C. and Trumbore, S., 1996. Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature, 380(6569), p.51.

    Jones, B.F. and Conko, K.M., 2011. Environmental influences on the occurrences of sepiolite and palygorskite: a brief review. In Developments in clay science (Vol. 3, pp. 69-83). Elsevier.

    Jones, B.F. and Deocampo, D.M., 2003. Geochemistry of saline lakes. Treatise on geochemistry, 5, p.605.

     Kadira,S , Erenb ,M, Külahc ,T, Erkoyuna ,H, Huggettd J, Önalgila,N,2018. Genesis of palygorskite and calcretes in Pliocene Eskişehir Basin, west central Anatolia, Turkey, Catena 168:62-78.

    Koutavas, A., Lynch-Stieglitz, J., Marchitto, T.M. and Sachs, J.P., 2002. El Nino-like pattern in ice age tropical Pacific sea surface temperature. Science, 297(5579), pp.226-230.

    Kovda, V.A. and Samoilova, E.M., 1969. Some problems of soda salinity. Agrokémia és Talajtan, 18, pp.21-36.

    Krinsley, D.B., 1970. A Geomorphological and Paleoclimatological Study of the Playas of Iran. Part I. Geological Survey Reston VA.

    Neal, J.T. and Motts, W.S., 1967. Recent geomorphic changes in playas of western United States. The Journal of Geology, 75(5), pp.511-525.

    Rahimpour-Bonab, H. and Abdi, L., 2012. Sedimentology and origin of Meyghan lake/playa deposits in Sanandaj–Sirjan zone, Iran. Carbonates and evaporites, 27(3-4), pp.375-393.

    Renaut, R.W. and Tiercelin, J.J., 1994. Lake Bogoria, Kenya rift valleya sedimentological overview.

    Ronald J. SpencerM. J. BaedeckerH. P. EugsterR. M. ForesterM. B. GoldhaberB. F. JonesK. KeltsJ. MckenzieD. B. MadsenS. L. RettigM. RubinC. J. Bowser., 2006. Evaporites:Sediments, Resources and Hydrocarbons Authors: Warren, John K.

    Rosen, M.R. and Warren, J.K., 1990. The origin and significance of groundwaterseepage gypsum from Bristol Dry Lake, California, USA. Sedimentology, 37(6), pp.983-996.

    Rosen, M.R., 1994. The importance of groundwater in playas: A review of playa classifications and. Paleoclimate and basin evolution of playa systems, 289, p.1.

    Rosen, M.R., 1994. The importance of groundwater in playas: A review of playa classifications and. Paleoclimate and basin evolution of playa systems, 289, p.1.

    Roy, P.D., Smykatz-Kloss, W. and Sinha, R., 2006. Late Holocene geochemical history inferred from Sambhar and Didwana playa sediments, Thar Desert, India: comparison and synthesis. Quaternary International, 144(1), pp.84-98.

    Sinha, R., Smykatz-Kloss, W., Stüben, D., Harrison, S.P., Berner, Z. and Kramar, U., 2006. Late Quaternary palaeoclimatic reconstruction from the lacustrine sediments of the Sambhar playa core, Thar Desert margin, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 233(3-4), pp.252-270.

    Szabolcs, I., 1994. Prospect for soil salinity for the 21st century. In the 15th World Congress of Soil Science, Acapulco, Mexico, July 10-16, 1994 (pp. 123-141).

    1. Schütt, 2000. Holocene paleohydrology of playa lakes in northern and central Spain: A reconstruction based on the mineral composition of lacustrine sediments, Quaternary International, 73(1):7-2

    Street-Perrott, F.A. and Harrison, S.P. (1985) Lake Levels and Climate Reconstruction. In: Hecht, A.D., Ed., Paleoclimate Analysis and Modeling, John Willey & Sons, New York, 291-331.

    1. Stuart May, A. C. Barrett, Tim J Cohen, 2015. Late Quaternary evolution of a playa margin at Lake Frome, South Australia. Journal of Arid Environments

    Vol. 122, Pages 93-108Thomas, D.S. ed., 2011. Arid zone geomorphology: process, form and change in drylands. John Wiley & Sons.

    Tucker ME., 2001. Sedimentary petrology: an introduction to the origin of sedimentary rocks. Blackwell Scientific Publication, London, pp. 260.

    Warren, J., 1999. Evaporites: their evolution and economics. Wiley-Blackwell.

    Warren, J.K., 2006. Evaporites: sediments, resources and hydrocarbons. Springer Science & Business Media.

    Watson A., 1983. Evaporate sedimentation in non–marine environments. In: Goudie AS, Pye K (eds.), Chemical sediments and geomorphology: precipitates and residua in the near–surfaceenvironment. Academic Press, London, pp. 163–185.

    Wilson, E. O. 1999. The diversity of life. 2nd edition. W. W. Norton, New York

    Yechieli, Y. and Wood, W.W., 2002. Hydrogeologic processes in saline systems: playas, sabkhas, and saline lakes. Earth-Science Reviews, 58(3-4), pp.343-365.