برآورد جابجایی مسطحاتی و ارتفاعی تپه های ماسه ای ریگ اردستان با استفاده از تداخل سنجی راداری و شاخص های طیفی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه ژئومورفولوژی دانشکده علوم جغرافیائی، دانشگاه خوارزمی.

2 دانشیار گروه ژئومورفولوژی، دانشکده علوم جغرافیائی، دانشگاه خوارزمی.

3 دانشیار گروه ژئومورفولوژی، دانشکده علوم جغرافیائی، دانشگاه خوارزمی .

4 دانشجوی دکتری ژئومورفولوژی، دانشگاه خوارزمی.

10.22034/gmpj.2020.106407

چکیده

جابجایی و ناپایداری تپه‌های ماسه‌ای از مهمترین دغدغه‌های نواحی مرکزی ایران است و این چالش از اولویت‌های برنامه‌ریزان آمایش ژئومورفولوژیکی جهت تعیین اولویت‌ها و راهکارهایی به منظور کاهش اثرات مخرب آن‌ها در نظر گرفته می شود. در این مطالعه از تداخل سنجی راداری بر روی تصاویر Sentinel 1 و نسبت گیری بر روی تصاویر چندباندی Sentinel 2 به ترتیب برای برآورد مدل رقومی ارتفاعی، جابجایی عمودی و جابجایی مسطحاتی تپه‌های ماسه‌ای ریگ اردستان در شمال استان اصفهان استفاده شد. دقت سنجی نتایج با استفاده از نقاط میدانی برای RMSE، MAE و R2 در جابجایی عمودی به ترتیب 0.052، 0.037 و 0.86 بود، در حالی که برای مدل رقومی ارتفاعی و جابجایی مسطحاتی به ترتیب 2.42، 2.06، 0.73 و 4068، 3.73، 0.67 را نشان می‌داد. نتایج مطالعه نشان داد که سمت حرکت کلی تپه‌های ماسه ای در بازه زمانی مطالعه شده از شمال شرقی به جنوب غربی می‌باشد، از طرفی اندازه جابجایی تپه‌های ماسه ای در ابعاد مسطحاتی و ارتفاعی به حجم آن‌ها بستگی دارد، این مطالعه با به کارگیری تداخل سنجی راداری برای مدلسازی جابجایی عمودی، بر اهمیت و قابلیت بالقوه تصاویر راداری در پایش لندفرم‌های بادی که از عوامل تهدید آمیز حیات ساکنین نواحی مرکزی ایران می‌باشند، تأکید داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Estimate of Flatness movement and Elevation movement of aeolians in Ardestan erg by Radar Interferometry and Spectral Indicators

نویسندگان [English]

  • Ali Ahmadabadi 1
  • Amir Karam 2
  • Amir Saffari 3
  • mehdi yazdan panah 4
1 assistant Prof. of Kharazmi university
2 associate prof. of kharazmi university
3 associate prof. of kharazmi university
4 kharazmi University
چکیده [English]

Introduction
The displacement and instability of sand dunes are the most important environmental and socio-economic issues of the central regions of Iran. The field scale studies consist of varieties of landforms, such as; mapping and classification, pattern analysis, spatial analysis, topographic changes and morphology studies of landforms and the estimation of mineralogical and sedimentary characteristics. These studies include Al-Masrahy and Mountney (2013), Bazzichetto et al (2016), Al-Mutiry et al (2016) and Metelka et al. (2018). Particularly, in Iran Dafar (1392), Weso et al. (1393), Aharari Roody (1396) have some investigations in this field.
Reviewing of above studies indicates the vertical displacement of landforms has been neglected, although the information of vertical displacement of landforms may not have same importance as horizontal displacements, however, accessing to vertical displacement for 3D modeling and accurate estimation of displaced sediment volumes can be determinative and it is absolutely vital.
The present literature is based on the use of radar Interferometry techniques for estimating vertical displacement and spectral indices derived from satellite bundle combinations in order to estimate the horizontal displacement of sand dunes and wind landforms.
Methodology
This study used Sentinel 1 satellite radar imageries and Sentinel 2 multispectral images have taken in the spring of 2018, which covered the rugged area of Ardestan. In addition to visual data and in order to validate the results of the GPS receiver, a wide range of studies was taken at the time interval between the images have being taken at 110 points in which included the coordinate information and the class of land use study.
The plane displacement rugged area of Ardestan is located in the central area of Ardestan province in north of Isfahan state, with an area of over 2000 square kilometers, which encompasses longitudinal to east and latitudinal to north.
Generaly, the implementation of the research was carried out in two stages of modeling and estimation of the vertical displacement and plane displacement of sand dunes.
Vertical displacement: for this purpose, both Interferometric wide of Sentinel 1 image have been used. Through interferometric processing, you can eliminate the sources of error and just continue with the so-called desired sources, like; height or displacement. In the construction phase of the interferometer, you can also estimate correlation.
Horizontal displacement: for estimating horizontal displacement just used two Sentinel 2 images. Spectral indices were used to estimate the range and extent of sand dunes. In this study, three spectral indices were used, such as; Normalized Difference Vegetation Index (NDVI), Normalized Difference sand Index (NDSI) and Bare soil index.
Discussion
The range of altitudinal displacement values in comparison with plane displacement indicates lower values, the factor of the displacement of wind landforms; whether vertical or plane is wind force and Vertical displacement evolves by the sequence of plane motion, which results to aggregating or slipping of the sand particles, Therefore, the domain of its values at any specific time interval is less than the range of displacement values of the planes.
To assess the accuracy of reviewing vertical and horizontal displacement values of sand dunes, they used three parameters, such as; average square error (RMSE), average mean error (MAE) and coefficient of detection or determination ( )(Powell et al., 2007) (Table 2). Although the accuracy obtained in digital elevation model and both vertical and horizontal displacements seem to be acceptable, however, precision parameters in DEM and vertical displacement show higher accuracy.
precision parameters

MAE RMSE outcome
0.73 2.06 2.42 Digital elevation model
0.86 0.037 0.052 Altitudinal displacement
0.67 3.74 4.68 Horizontal displacement

Table 2: Accuracy of elevation and plane displacement maps is based on precision parameters
The general direction of the movement of sand dunes is from the northeast to the southwest which is in compliance with the recorded position of prevailing winds of Ardestan Meteorological Station (weather station).
The displacement of sand dunes can be attributed to their initial volume and height. In general, you can mention that the height and volume of the hill become higher; there is a greater desire for changing in its original location, this change can result in displacement of any flat or vertical dimensions. To evaluate this assumption, points are taken out in each of the three outputs of the digital elevation, vertical displacement, and horizontal displacement and their corresponding values are compared in pair, in both cases, altitudinal values on the X axis are considered as independent variables in relation to the vertical displacement, on the other side, the displacement of the planes on the Y axis as a dependent variable. From linear fit between the two independent and dependent variables in both cases and also forming of the regression equation between the two variables, it can be concluded that the higher altitudinal values in sand dunes area increase unrest and desire to change, also coefficient of determination in case of changing altitude function has increased. This difference indicates that there is a more meaningful relationship between the two variables, In other words, by accelerating the height of the wind landforms, Vertical displacement of landforms is more likely happened, and its values are higher than those dunes with lower altitude.
Conclusion
These findings of this study are: The direction of the overall movement of Ardestan sand dunes from northeast to southwest in April and May, The size and extent of displacement of sand dunes depends on dimensions of the planes and the altitudes of dunes, basically the instability of elevated and more massive landforms is the effect of their stimulus against movement of prevailing wind.
This study has used Radar Interferometry for vertical displacement modeling, emphasized on the importance and potential of radar images in monitoring wind landforms which have mobile and fluid nature that are threatening factors life of the inhabitants of central zone and desert margin in Iran. The process and results of this study could be used in future studies and local geomorphological planners have exposed to wind landforms that have executive value.

کلیدواژه‌ها [English]

  • Sand dunes
  • Radar Interferometry
  • vertical displacement
  • plane displacement
  • rugged Ardestan province
احراری رودی، محی الدین. 1396، بررسی نحوه تشکیل و گسترش تپه‌های ماسه‌ای و تأثیر آن بر مورفولوژی محیط ساحلی دریای عمان، پژوهش‌های ژئومورفولوژی کمی، شماره 3، صص 175- 163.
احمدیان، محمد علی. 1387، بیابان (نگرشی سیستمی به فرایند بیابان زایی و بیابان زدایی). فصلنامه تحقیقات جغرافیایی، شماره 52 و 53، صص 144 تا 159.
اختصاصی، محمد رضا و دادفر، صدیقه. 1392، بررسی رابطه تندبادهای سواحل جنوبی ایران با مورفولوژی تپه‌های ماسه‌ای، پژوهش های جغرافیای طبیعی، شماره 4، صص 61 تا 72.
ام می تر، پاول. 1389، پردازش کامپیوتری تصاویر سنجش از دور، ترجمه جلال امینی، انتشارات دانشگاه تهران، تهران.
امیدوار، کمال. 1385، بررسی و تحلیل سینوپتیکی طوفان های ماسه در دشت یزد – اردکان، تحقیقات جغرافیایی، شماره 2، صص 43 تا 58.
تازه، مهدی؛ اختصاصی، محمد رضا؛ شریعتمداری، شهاب­الدین و طهماسبی، علی محمد .1384. تعیین جهت غالب رسوبگذاری نهشته‌های ماسه، بادی ایران با استفاده از اطلاعات کانون‌های بحرانی فرسایش بادی، اولین همایش ملی فرسایش بادی، 27 بهمن 1384یزد.
رامشت، محمد حسین؛ سیف، عبدالله و محمودی، شبنم. 1391، بررسی میزان گسترش تپه های ماسه ای شرق جاسک در بازه زمانی (1383- 1369) با استفاده از GIS و RS، جغرافیا و توسعه، شماره 31، صص 121 تا 136.
رفاهی، حسینقلی. 1383، فرسایش بادی و کنترل آن، انتشارات دانشگاه تهران، تهران.
نگارش، حسین و لطیفی، لیلا. 1387، تحلیل ژئومورفولوژیکی روند پیشروی تپه­های ماسه­ای شرق دشت سیستان در سال­های اخیر. 1387، جغرافیا و توسعه، شماره 12، صص 43 تا 60.
وسو، محبوبه؛ میراب شبستری، غلامرضا و امینی، آرش. 1393، رابطه مورفولوژی تپه‌های ماسه ای با شاخص های مورفومتری در شرق بابلسر، پژوهش های جغرافیای طبیعی، شماره 2، صص 219 تا 230.
Vosou M. , Mirab Shabestari GH., Amini A., 2014, Morphological relationship between Aeolians and morphometric indexes in east of Babolsar, Physical Geography Research, No. 2, pp. 219-230.
Abdulhalim, A. S. and Farhood, A. F., 2015. Monitoring the Movement of Sand Dunes in Thi Qar Governorate Using Some Spectral Indices, International Journal of Scientific Engineering and Research (IJSER), pp.112-118.
Al-Dabi, H., Maghali, EI-Baz, F. and Al-Sarawi, M. 1998. Mapping and monitoring sand dune patterns northwest Kuwait using Landsat TM image, ln: Sustainable Development in Arid Zones (eds Omar, S.A.S. Misak, R. & Sattelite Al- Ajami, D.), Vol Balkema.
Al-Masrahy, M.A. and Mountney, N.P., 2013. Remote sensing of spatial variability in aeolian dune and interdune morphology in the Rub’Al-Khali, Saudi Arabia. Aeolian Research, 11, pp.155-170.
Al-Mutiry, M., Hermas, E.A., Al-Ghamdi, K.A. and Al-Awaji, H., 2016. Estimation of dune migration rates north Riyadh City, KSA, using SPOT 4 panchromatic images. Journal of African Earth Sciences, 124, pp.258-269.
Bishop, M. A. 2010. Nearest neighbor analysis of mega-barchanoid dunes, Ar Rub' al Khali, sand sea: The application of geographical indices to the understanding of dune field self-organization, maturity and environmental change. Geomorphology, 120, 186–194.
Bazzichetto, M., Malavasi, M., Acosta, A.T.R. and Carranza, M.L., 2016. How does dune morphology shape coastal EC habitats occurrence? A remote sensing approach using airborne LiDAR on the Mediterranean coast. Ecological Indicators, 71, pp.618-626.
Costantini, M., 1998. A novel phase unwrapping method based on network programming. IEEE Tran. on Geoscience and Remote Sensing, 36, 813-821.
Ferretti A., Massonet D., Monti Guarnieri A., Prati C., Rocca F., 2007, InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation, ESA TM-19
Fadhil, A. M. 2013, Sand dunes monitoring using remote sensing and GIS techniques for some sites in Iraq. In PIAGENG 2013: Intelligent Information, Control, and Communication Technology for Agricultural Engineering (Vol. 8762, p. 876206). International Society for Optics and Photonics.
Frank, A., Kocurek, G., 1996. Airflow up the stoss slope of sand dunes: limitations of current understanding. Geomorphology 17, 47–54.
Ghadiry, M. and Barbara, K. 2010, Developing a Monitoring System for Sand Dunes Migration. Remote Sensing for Science, 313- 320.
Gholizadeh, A., Žižala, D., Saberioon, M. and Borůvka, L., 2018. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sensing of Environment, 218, pp.89-103.
Lancaster, N., Nickling, W.G., McKenna Neuman, C., Wyatt, V.E., 1996. Sediment flux and airflow on the stoss slope of a barchans dune. Geomorphology 17, 55–62.
Lin, Guanghui .2002, Dust bowl in the 1930’ sand storms in the USA, Global Alarm: Dust and sand storms from the world’s dry lands, United Nations.
Livingstone, I., 2003. A twenty-one-year record of surface change on a Namib linear dune. Earth Surface Processes and Landforms, 28 1025–1031.
Livingstone, I., Wiggs, G. F. S., & Weaver, C. M. 2007. Geomorphology of desert sand dunes: A review of recent progress. Earth-Science Reviews, 80, 239–257.
Mark A. Richards, 2007. A Beginner’s Guide to Interferometric SAR Concepts and Signal Processing, IEEE A&E SYSTEMS MAGAZINE VOL. 22, NO. 9.
Metelka, V., Baratoux, L., Jessell, M.W., Barth, A., Ježek, J. and Naba, S., 2018. Automated regolith landform mapping using airborne geophysics and remote sensing data, Burkina Faso, West Africa. Remote Sensing of Environment, 204, pp.964-978.
Moursy, F., Gaber, E.I., Samak, M., 2001, Sand Drift Potential in EL-Khanka, Egypt, Water, Air & Soil Pollution, Vol. 136, No. 1-4, PP. 225-242.
Squires, Victor, R. 2002, Dust and Storms: An early warming of impending disaster, Global Alarm: Dust and sand storms from the world’s dry lands, United Nations.
Walmsley, J.L., Howard, A.D., 1985. Application of a boundary-layer model to flow over an aeolian dune. Journal of Geophysical Research 90 (D6), 10631–10640.
Wang, X., Dong, Z., Zhang, J., Q, J & Z, A. 2002. Grain size characteristics of dune sands in the centeral Taklimakan sand sea. Sedimentary Geology, 161, 1- 14.
Webb, N.P., McGowan, H.A., Phinn, S.R. and McTainsh, G.H., 2006. AUSLEM (AUStralian Land Erodibility Model): A tool for identifying wind erosion hazard in Australia. Geomorphology, 78(3), pp.179-200.
Wiggs, G.F.S., Livingstone, I., Warren, A., 1996. The role of streamline curvature in sand dune dynamics: evidence from field and wind tunnel measurements. Geomorphology 17, 29–46.
Wiggs, G.F.S., 2001. Desert dune processes and dynamics. Progress in Physical Geography 25, 53–79.
Yagüe-Martínez, N., Prats-Iraola, P., Gonzalez, F.R., Brcic, R., Shau, R., Geudtner, D., Eineder, M. and Bamler, R., 2016. Interferometric processing of Sentinel-1 TOPS data. IEEE Transactions on Geoscience and Remote Sensing, 54(4), pp.2220-2234.
Youlin, Yang. 2002, Black windstorm in northwest China: A case study of the stormy sand- dust storms on May 5th 1993. Global Alarm: Dust and sand storms from the world’s dry lands, United Nations.