ارزیابی عملکرد بارش سنگین در فعال‌ شدن مجدد پالئولنداسلاید روستای حسین آباد کالپوش

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ژئومورفولوژی، دانشگاه فردوسی مشهد.

2 دانشیار ژئومورفولوژی، گروه جغرافیا، دانشگاه فردوسی مشهد.

3 استاد زمین شناسی مهندسی، دانشگاه فردوسی مشهد.

4 دانشیار علوم اطلاعات جغرافیایی (GIScience)، گروه جغرافیا، دانشگاه فردوسی مشهد.

5 استادیار گروه آمار، دانشگاه بجنورد.

10.22034/gmpj.2022.307260.1305

چکیده

اکثر لغزشها در بستر لغزشهای قدیمی به وقوع میپیوندند و براین اساس برای پیش بینی خطرات احتمالی لغزش در آینده، شناسایی لغزش های قدیمی یا همان پالئولنداسلایدها بسیار مهم است. فعالیت مجدد پالئولنداسلایدها در سال های پربارش اخیر، خسارات فراوانی را به روستاهای حوضه کالپوش استان سمنان وارد نموده است. لذا هدف از این پژوهش شناسایی پالئولنداسلاید روستای حسین آباد کالپوش و پایش فعالیت مجدد آنها در برابر بارش سنگین اواخر سال 1397، با استفاده از تکنیک تداخل سنجی راداری مبتنی بر پراکنش کنندههای دائمیPS است. دادههای تحقیق شامل داده های تاریخی، بازدیدهای میدانی، آمار بارندگی روزانه و 68 تصویر راداری سنتینل1A/B می باشد. به این منظور ابتدا نقشه پراکندگی پالئولنداسلایدها و لغزشهای جدید براساس سال وقوع از روی عکسهای هوایی، تصاویر ماهواره ای و بازدیدهای میدانی تهیه و نقشه ژئومورفولوژی لغزش حسین آباد ترسیم گردید و آمار بارندگی روزانه و تجمعی بارش مورد تحلیل قرار گرفت، سپس با استفاده از روش سری زمانی PS ، نقشه نرخ جابه جایی پالئولنداسلاید حسین آباد بین سال های 1397-1398تولید شد. نتایج پژوهش بیانگر این است که، عامل محرک بارش سنگین سبب ایجاد تنش و شکست در سطح لغزشی گردیده است. همچنین، تغییرات نرخ جابه جایی در مدار بالاگذر از 12- میلیمتر تا 19 میلیمتر در یکسال برای لغزش حسین آباد ثبت گردیده است. موقعیت مکانی این جابه جایی ها با ویژگیهای فضایی- مکانی لغزش های جدید در طبیعت مطابقت دارد و باتوجه به اهمیت موضوع و مخاطرات آن برای ساکنین منطقه، مطالعات بیشتری در این زمینه لازم میباشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Heavy Rainfall Operation in Reactivation of Paleolandslide in Hossein-Abad Kalpoosh Village

نویسندگان [English]

  • Mahdieh Ghayoor Bolorfroshan 1
  • Seyed Reza Hosseinzadeh 2
  • Gholam Reza Lashkaripour 3
  • Masoud Minaei 4
  • Hakimeh Morabbi Heravi 5
1 Department of Geography. Faculty of Letters and Humanities. Ferdowsi University Of mashhad . iran
2 Dep. of Geography, Faculty of Letters and Humanities, Ferdowsi University of Mashhad, Mashhad, Iran
3 Department of Geology. Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
4 Faculty of Letters and Humanities, Ferdowsi University of Mashhad, Mashhad, Iran.
5 University of Bojnord, Bojnord, Iran
چکیده [English]

Introduction

The term landslide has various meanings and applications in general and specialized fields. Landslide is a process of changes in stress-strain state of a slope ground mass leading to a mass separation and ground movement downslope and paleolandslides are mass movements that predate the historical period and are documented using geologic and geomorphologic evidence. Based on the time of occurrence, landslides are divided into four groups: Ancient (Before Holocene), Old (Early Holocene),Recent (Late Holocene) and Present-Day. Landslides belong to Ancient, Old and Recent groups are known as Paleolandslides.

Landslides often occur sudden and catastrophic. According to the International Disasters Database of records in 2017, have been died 2312 people as landslides in the world, Only 830 cases have been reported for the 9-year period between 2007-2016. This sudden increase in human casualties is correlated with heavy rains during climate change and large-scale global warming.

Most slope erosion occurs in many humid mountain environments due to heavy rainfall and earthquake. Also landslides often occur in places that have occurred in the past. So, the aim of this study is to identify paleolandslides and monitor their relocation at the present time, focusing on the dominant trigger factors in the region such as heavy rainfall, by Persistent Scatterer Interferometry technique and Sentinel 1A/B images.

Methodology

The study area, with an area of about 60 hectares, is located in the North of Semnan province. Kalpoosh Catchment situated in the geological zone of Kopeh Dagh and at the point of its collision with Eastern Alborz. Karstic limestones of Chaman Bid and Mozdoran formations were exposed in the area and Oghan River, which is one of the main tributaries of Gorganrud River, passes through this area. Hossein Abad village ,with a population of 3514 people, is the largest village in this region.

First, a map of distribution of modern landslides and paleolandslides was prepared using old Aerial Photos, Google Earth and field visits and a landslide geomorphology map was drawn Then, cumulative precipitation and rainfall intensity were determined based on daily and monthly precipitation data. finally the displacement maps has been prepared by Persistent Scatterer Interferometry technique using 68 images of Sentinel 1A/B in 2018-2019 and the vertical displacement is evaluated by field survey.

Results and Discussion

4 paleolandslides have been identified in Hossein-Abad Kalpoosh Village . Paleolandslides have been occurred near dam lake on limestone and marl limestone. The mechanism of occurrence of paleolandslides in the region in the past goes back to the trigger of heavy rainfall and erosion in the karst environment, which due to tectonic conditions and the occurrence of several earthquakes after 1968, have occurred completely.

In the winter of 2019, the region received a total of 672 mm of rainfall and this amount of rainfall is 3.5 times more than the seasonal average of previous years. The total daily rainfall in 3 days from March 2019 was 240 mm and as a result, the intensity of rainfall on March 19, with 134 mm of rainfall, has been in the heavy rainfall group.

According to satellite images and field surveys, the buildings located in the paleolandslide of Hossein Abad village, after heavy rainfall, have been displaced in the sliding area to toe in different directions of horizontal and oblique movement and move down the slope.

The displacement maps of Sentinel 1A/B shows reactivation of paleolandslides in the area between 2018-2019 . The ascending and descending tracks had an annual displacement of -12 - 19 mm and -22 - 16 mm, respectively. we estimated 38 mm of elevation in the deposite area.



Conclusion

Landslides often occur where they have occurred in the past, therefore, to predict the possible dangers of landslides in the future, it is very important to identify paleolandslides and study their behavior.

The results show that paleolandslides have the most landslide activities in Hosseina Abad Kalpposh village at the present time. Also, the trigger factor of rainfall has had a great effect on the reactivation of paleolandslides . Heavy rainfall, in addition to causing the slope failure surface and occurring landslide in the area, has caused increasing the water level of Hossein Abad Dam Lake and the infiltration of water into the paleolandslide mass and has reactivated it.

In addition, the range of displacements in the prepared map is in full accordance with the spatial-spatial characteristics of the new landslides in nature. The greatest fall is in the sliding area and the toe of the landslide. Also, the highest uplift and accumulation of soil is at the foot of the landslide, which has caused the floor of buildings to rise and their relative destruction. In future research, we examine the role of Kalposh dam lake and other human factors in Reactivation paleolandslide.

کلیدواژه‌ها [English]

  • Landslide
  • Paleolandslide
  • Kalpoosh
  • Sentinel 1
شامی، س. و قربانی، ز.، 1398. پردازش تصاویر راداری با نرم افزارهایGMTSAR  و SNAP، موسسه ارشدان، تهران.
شیرانی، ک.، 1397. شناسایی، پایش و بررسی سازوکار زمین لغزش با استفاده از روش تداخل سنجی پراکنش کننده­های دائمی تصاویر ماهواره­ای رادار با روزنه ترکیبی، علوم آب و خاک، شماره3، صص 213-234.
مشهدی حسینعلی، م. و شامی، س.، 1398. پردازش تصاویر راداری با نرم افزار StaMPS، انتشارات دانشگاه خواجه نصیرالدین طوسی، تهران.
یاراحمدی، ج.، حبیب زاده، ا.، رفیعی، م. و عباس زاده،ک.، 1399. رفتارسنجی توده لغزشی دوپیق در حوزه آبخیز اهرچای با استفاده از روش پراکنشگرهای ثابت تداخل سنجی راداری و GPS سه فرکانسه، فصلنامه­ی علمی فضای جغرافیایی، سال بیستم، شماره69، صص 152-164.
Bayer, B., Simoni, A., Mulas, M., Corsini, A. & Schmidt, D., 2018. Deformation responses of slow moving landslides to seasonal rainfall in the Northern Apennines, Measured by InSAR. Geomorphology, 308, 293-306.
Berti, M. & Simoni, A., 2012. Observation and analysis of near-surface pore-pressure
measurements in clay-shales slopes. Hydrol. Process, 26, 2187–2205.
Clague, J., 2012. Landslides: types, mechanisms and modeling. Cambridge university press, Cambridge.
Dai,K., Xu,Q., Li,Z.,Tomas,R., Fan, X., Dong,X., Li, W., Zhou, Z., Gou,J. & Ran,P.,2019. Post-disaster assessment of 2017 catastrophic Xinmo landslide (China) by spaceborne SAR interferometry. Landslide, 16, 1189-1199.
Del Ventisette, C., Righini, G., Moretti, S. & Casagli, N., 2014. Multitemporal landslide inventory map updating using spaceborne SAR analysis. International journal of applies earth observation and geoinformation, 30, 238-246.
Eker, R. & Aydın, A., 2021. Long-term retrospective investigation of a large, deep-seated, and slow moving landslide using InSAR time series, historical aerial photographs, and UAV data: The case of Devrek landslide (NW Turkey). Catena, 196, 1-12.
Evans, S., Delaney, K., Hermanns, R., Strom, A. & Scarascia-Mugnozza, G., 2011. The formation and behaviour of natural and artificial rockslide dams; implications for engineering performance and hazard management. Natural and Artificial Rockslide Dams, 133, 1 –75.
Fan, X., Zhan, W., Donga, D., van Westenc, C., Xu, Q., Dai, L., Yang, Q., Huanga, R. & Havenith, H., 2018. Analyzing successive landslide dam formation by different triggering mechanisms: The case of the Tangjiawan landslide, Sichuan, China. Engineering Geology, 243, 128-144.
Ferretti, A., C. Prati and F. Rocca., 2001. Permanent Scatterers in SAR interferometry. IEEE Trans. Geosciences and Remote Sensing, 39, 8–20.
Handwerger, A.L., Roering, J.J. & Schmidt, D.A., 2013. Controls on the seasonal deformation of slow-moving landslides. Earth Planet. Sci. Lett, 1, 239–247.
Hooper, A., P. Segall and H. Zebker., 2007. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcan Alcedo, Galapagos. Journal of Geophysics and Remote Sensing 112, B07407.
Kazeev, A. & Postoev, G., 2017. Landslide investigations in Russia and the former USSR. Natural Hazards, 88(1), 81-101.
Lazecky, M., Canaslan, C, F., Hiavacoca, I. & Gurboga, S., 2015 .Practical application of satellite- based SAR interferometry for the Detection of landslide activity. Procedia Earth and Planetary Science, 15, 613 – 618.
Li, Y. & Mo, P., 2019. A unified landslide classification system for loess slopes. Geomorphology, 340, 67-83.
Liu, S., Segoni, S., Raspini F., Yin, K., Zhou, C., Zhang, Y. & Casaglim, N., 2020. Satellite InSAR as a New Tool for the Verification of Landslide Engineering Remedial Works at the Regional Scale: A Case Study in the Three Gorges Resevoir Area, China. Applied sciences, 10, 6435, 1-18.
Liu, Z., Xu, B., Wang, Q., Yu, W. & Miao, Z., 2021. Monitoring landslide associated with reservoir impoundment using synthetic aperture radar interferometry: A case study of the Yalong reservoir. Geodesy and Geodynamics, 1-13.
Samsonov, S., Dille, A., Dewitte, O., Kervyn, F. & Oreye, N., 2020. Satellite interferometry for mapping surface deformation time series in one, two and three dimensions: A new method illustrated on a slow-moving landslide. Engineering Geology, 266, 105471, 1-13.
Sarkar, S., 1999. Landslides in Darjiling Himalayas. Japanese Geomorphological, 20, 299-315.
Schlogel, R., Doubre, C., Malet, J. & Masson, F., 2015. Landslide deformation monitoring with ALOS/PALSAR imagery: A DInSAR geomorphological interpretation method. Geomorphology, 231, 314 – 330.
Saito, H., Korup, O., Uchida, T., Hayashi, S. & Oghuchi, T., 2014. Rainfall conditions, typhoon frequency, and contemporary landslide erosion in Japan. Geology, 42, 999-1002.
Temme, A., Guzzetti, F., Samia, J. & Mirus, B., 2020. The future of landslides’ past -a framework for assessing consecutive landsliding systems. Landslide, 17, 1519-1528.
Triatmodjo, B., 2008. Applied Hydrology. Yogyakarta, Beta Offset.
Thuro, K., Berner, C. & Eberhardt, E., 2006. The 1806 landslide of Goldau-200 years after the event (Der Bergsturz von Goldau 1806–200 Jahre nach dem Ereignis). Felsbau, 24, 59–66.
Wang, H.B., Zhou, B., Wu, S.R., Shi, J.S. & Li, B., 2011. Characteristic analysis of large-scale loess landslides: a case study in Baoji city of loess plateau of northwest China. Natural Hazards and Earth System Sciences, 11, 1829 –1837.