پیدایش و ویژگی‌های ژئومورفولوژیکی چشم انداز بدلند شبه کارستی جنوب گلباف، استان کرمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه زمین شناسی، دانشکده علوم، دانشگاه شهید باهنر کرمان.

2 پژوهشگر پسادکترا، گروه زمین شناسی، دانشکده علوم، دانشگاه شهید باهنر کرمان.

10.22034/gmpj.2022.360054.1373

چکیده

هدف این مطالعه بررسی نحوه پیدایش چشم انداز بدلند شبه کارستی جنوب گلباف کرمان و شناسائی عوارض و فرایندهای تشکیل دهنده آن است. وجود چنین چشم اندازکمیاب و جالبی در ایران برای اولین بار گزارش می شود. لذا معرفی مشخصات و نحوه پیدایش آن اهمیت زیادی دارد. بدین منظور، این چشم انداز مورد مطالعه میدانی قرار گرفت، عوارض تشکیل دهنده آن شناسایی شدند، فرایندهای تشکیل دهنده آن مشخص شدند،سنجش های مورفومتریکی روی عوارض آن صورت گرفت و نحوه عملکرد سیستم هیدرولوژیکی آن تعیین گردید. همچنین، نحوه تشکیل این چشم انداز ژئومورفولوژیکی شناسایی و با کارست واقعی مقایسه شد. براساس این مطالعه، ماده‌ای که بدلندها در آن تشکیل شده‌اند یک لوم (گل سنگ) با مشخصات مناسب برای تشکیل رگاب است. لذا، در اثر خشک شدن آن و پیدایش شکاف‌های انقباضی، جریان‌های سطحی وارد رسوب گردیده و با حرکت در شبکه شکاف‌ها و فرسایش، موجب ایجاد شبکه رگاب و توسعه این نوع بدلند شده‌اند. عوارض سطح این بدلند عبارتند از آبکندهای فرسایشی و ریزشی، چاله‌های قیفی فراوان و چاله‌های ریزشی. برای تشکیل این عوارض در سطح کفه رسی جنوب گلباف باید رژیم محیط از رسوبگذاری به فرسایشی تغییر می‌کرد که این اتفاق در اثر ایجاد یک نیک پوینت در محلی که سیلاب‌ها از این محیط سرریز کرده‌اند صورت گرفته است. عقب نشینی نیک پوینت ایجاد شده در نقطه سرریز باعث حفر سطح کفه رسی توسط جریان‌های عبوری و تغییر رژیم محیط از رسوبگذاری به فرسایشی، و شکل گیری آبکندهای فرسایشی شد.

کلیدواژه‌ها


عنوان مقاله [English]

Generation and Geomorphological Charactristics of Pseudo-karstic Badland Landscapes in South Golbaf, Kerman Province

نویسندگان [English]

  • Ahmad Abbasnejad 1
  • Behnam Abbasnejad 2
1 Department of Geology, Shahid Bahonar University of Kerman
2 Geology department, Shahid Bahonar University of Kerman
چکیده [English]

Introduction

The "badland" term refers to regions that have soft and poorly consolidated material outcrops, limited vegetation, reduced or no human activity and a wide range of geomorphic processes (Martinez- Morillo and Nadal- Romero, 2018). A specific character of these landscapes is their high rates of evolution. Although, these landscapes may be observed in any climate, but they commonly are seen in arid and semiarid areas. Lithology plays a key role in their formation. The most common lithologies creating badlands are mud rocks and marine marls (Faulkner, 2013), because such factors as fine particles and richness in Na+ cause their particles to be dispersed and become prone to erosion and piping. The main particles in badland- forming lithologies include clays and silts, since they are suitable for weathering, dispersion, piping and slope instability (Faulkner, 2016). Clay particles play a major role in permeability, contraction- expansion capacity, slaking, fissility and weathering profile of the materials creating badlands. Two- layer clays such as montmorillonite are more susceptible to dispersion than other clays.

There are four main type of badland, which include calanchi, biancane, pinnacle and pseudokarstic. The kind of badland formed in a specific area depends on such diverse factors as lithology, tectonic activity, climate, as well as topographic slope.

Pseudokarstic badlands are much less common than the other three types, mainly because they need vertical and horizontal pipes for development. These badlands have several apparent similarities with true karsts and this is why they are called pseudokarstic.

The prerequisite for formation of these badlands is development of pipes. Intensified erosion at the mouth of vertical pipes creates funnel- shaped depressions similar to miniature solution dolines. Enlargement of horizontal pipes may cause their roofs to collapse and collapse depressions take form. At a larger scale, it is possible that the entire roof of a horizontal pipe to collapse and a collapse gully will form.



Materials and Methods

In this study, the following investigations were undertaken.

1. Field investigation for discovering the characteritics of studied badlands.

2. The landforms constituting these landscapes were identified.

3. The hydrological system of the badlands was investigated.

4. The processes creating this landscape were studied.

5. A model for formation of the studied badlands is presented.

6. Morphomeric measuremens of landforms were undertaken.

7. The studied pseudokarstic badlands are compared with true karsts.



Study area



The study area lies at at a distance of about 85 km at the east of Kerman city. The playa surface on which the badland landscape has formed gently slopes towards the north and is 9.1 km in length and 1.7 km in average length.The south Golbaf playa is situated at the southern part of NNW-SSE trending Golbaf tectonic valley. This valley in bounded from the west and the east, respectively, by Abbarik and Sekonj mountains.

The average amounts of annual precipitation and temperature in south Golbaf playa are about 110 mm and 17 ºC, respectively. Therefore, it expriences a dry climate .The south Golbaf playa is a small pull-apart basin created by tectonic tension and subsidence resulting from right-step condition in Golbaf fault zone (Walker and Jackson, 2002). Actually, this playa is the product of silt, clay and some sand deposition by incoming ephemeral streams.

























Results and Discussion

The material on which the studied badlands are formed is a loam deposit equivalent with mud rock. This material is fit for occurrence of badlands. Its minerals include gypsum, quartz, calcite, dolomite, albite, chlorite and montmorillonite. The exchangeable sodium percentage (ESP) value of these mud rocks is higher than 10, indicating a dispersible material suitable for piping.

There are a set of landforms which constitute the studied badlands. They include: erosion gullies, funnel- shaped depressions, collapse depressions and collapse gullies. The main processes operating on these badlands include weathering, erosion, slope failure, shrink and swell, dissolution, transport and precipitation. The main product of weathering is a thin regolith covering the loams. The operating processes acting on these badlands include rain splash, sheet wash, rill erosion and bank erosion in gullies. Additionally, tunnel erosion operates in the pipes which cause them to be enlarged. Pipe collapse, solifluction and creep are other processes affecting these badlands.

The studied badlands have formed from erosion of muds deposited in a pull apart basin which was formed as a result of right- step condition in two segments of the Gowk active fault. The thicknesses of these muds is 20m at maximum. This flat depositional environment became an erosional environment as a result of the depression being filled of muds and, the consequent overflowing of floods from the northwestern border of the depression. The resulting steep segment played as a knickpoint which moved backwards into the playa's flat environment, and incision of water courses. Incision of the playa surface created erosion gullies. The gullies devided the playa into a number of separated blocks which became dried as a result of drainage by erosion gullies. Drainage, ultimately, led to contraction of muds and creation of dessication fissures. Penetration of surface runoffs into these fissures, and the consequent erosion, created the pipe system. Also, intensified erosion at the mouth of vertical pipes created the funnel- shaped depressions. Morphometrically, the average depth and diameter of depressions are 1.6 and 2.8 meters, respectively. The studied pseudokarstic badlands have several similarities and differences with true karsts.





Conclusion

The studied pseudokarstic badlands have formed in mud rocks deposited in a small and shallow tectonic basin at 85 Km east of Kerman city, SE Iran. This environment shifted from depositional to erosional, as a result of being filled of sediments which caused overflow of the floods from a point at the north of the basin. The steep gradient resulting from overflowing played as a knickpoint which migrated upstreain. This led to erosion of playa surface by the passing flows. As a result, the playa deposits became dry and a network of contraction fissures were formed in them. The arrival of surface runoff into these fissures was led to depevopment of the pipe system.

کلیدواژه‌ها [English]

  • Pipe
  • Gully
  • Badland
  • Ground subsidence
  • Knickpoint
رحیمی، ح.، و عباسی، ن.، 1394. مهندسی ژئوتکنیک خاک های مشکل آفرین انتشارات دانشگاه تهران.
عباس نژاد, ا. و عباس نژاد, ب.، 1399. ویژگی های رسوب شناختی پلایای جنوب گلباف کرمان و تاثیر آن بر تشکیل و تکامـل بدلند شبه کارستی در این منطقه. دوفصلنامه رسوب شناسی کاربردی, 8(16), 19-27.‎.
عباس نژاد، ا.، 1390 ، خاک شناسی برای زمین شناسان، چاپ دوم، انتشارات دانشگاه شهید باهنر کرمان، 535ص.
عباس نژاد، ا.، 1401 ، نشست زمین، انتشارات دانشگاه شهید باهنر کرمان، 434 ص.
عباس نژاد، ب. و عباس نژاد، ا.، نشست زمین در دشت منوجان (جنوب استان کرمان) : عوامل، اثرات و پهنه­بندی زمین شناسی کاربردی پیشرفته، (1)7، 65-77.
فتاحی، م.، کریمی موید، ن. واکر ر. و طالبیان م.، 1392، استفاده از رخشانی نوری پس از فروسرخ، به منظور اندازهگیری نرخ لغزش گسل گوک، مجله فیزیک زمین و فضا، (2)39، 13-28.
Bernatek-Jakiel, A. and Wrońska-Wałach, D., 2018. Impact of piping on gully development in mid-altitude mountains under a temperate climate: A dendrogeomorphological approach. Catena, 165, pp.320-332.
Bernatek-Jakiel, A. and Wrońska-Wałach, D., 2019, January. The role of soil piping in gully development: A dendrogeomorphological approach. In Geophysical Research Abstracts (Vol. 21).
Bryan, R. and Yair, A. eds., 1982. Badland geomorphology and piping. Norwich [Norwich]: Geo Books.
Campbell, I.A., 1989. Badlands and badland gullies. Arid zone geomorphology, Belhaven / Hadsted Press, London, 159-186.
Cooper, M.P. and Mylroie, J.E., 2015. Glaciation and speleogenesis. Cham: Springer.
Doerr, S. and Wray, R.A.L., 2013. Pseudokarst in: Goudie A. (Ed). Encyclopaedia of Geomophology (Vol 2), Routledge, London, 814-816.
Farifteh, J. and Soeters, R., 1999. Factors underlying piping in the Basilicata region, southern Italy. Geomorphology, 26(4), pp.239-251.
Farifteh, J., & Soeters, R., 2006. Origin of biancane and calanchi in East Aliano, southern Italy. Geomorphology, 77(1-2), 142-152.
Fattahi, M., Walker, R. T., Talebian, M., Sloan, R. A., & Rasheedi, A., 2014. Late Quaternary active faulting and landscape evolution in relation to the Gowk Fault in the South Golbaf Basin, SE Iran. Geomorphology, 204, 334-343.
Faulkner, H., 2008. Connectivity as a crucial determinant of badland morphology and evolution. Geomorphology, 100(1-2), 91-103.
Faulkner, H., 2013. Badlands in marl lithologies: a field guide to soil dispersion, subsurface erosion and piping-origin gullies. Catena, 106, 42-53.
Faulkner, H., 2018. The role of piping in the development of badlands. In Badlands Dynamics in a Context of Global Change (pp. 191-216). Elsevier.
Ford, D. and Williams, P.D., 2013. Karst hydrogeology and geomorphology. John Wiley & Sons.
Gallart, F., Marignani, M., Pérez-Gallego, N., Santi, E. and Maccherini, S., 2013. Thirty years of studies on badlands, from physical to vegetational approaches. A succinct review. Catena, 106, pp.4-11.
Geological survey of Iran, 1973. Geological quadrangle map of Gowk, scale 1;100,000.
Halliday, W. R., 2007. Pseudokarst in the 21st century. Journal of Cave and Karst Studies, 69(1), 103-113.
Harvey, A., 1982. The role of piping in the development of badlands and gully systems in south-east Spain.
Harvey, A., 2004. Badland. Encyclopedia of Geomorphology, 1, 45-48.
Higgins, C. G., 2020. Piping and sapping: Development of landforms by groundwater outflow. In Groundwater as a geomorphic agent (pp. 18-58). Routledge.
Holler, C., 2019. Pseudokarst. In Encyclopedia of caves (pp. 836-849). Academic Press.
Hosseinalizadeh, M., Kariminejad, N., Campetella, G., Jalalifard, A. and Alinejad, M., 2018. Spatial point pattern analysis of piping erosion in loess-derived soils in Golestan Province, Iran. Geoderma, 328, pp.20-29.
Howard, A. D., 1994. Badlands. In Geomorphology of desert environments (pp. 213-242). Springer, Dordrecht.
Jones, J. A. A., 2004. Pipe and piping. Encyclopedia of geomorphology, 2, 784-788.
Joukar, S. I., & Mortezaei, N., 2016. Comparison of Frequency Ratio and Certainty Factor Models in Badland Erosion Zonation (Case Study: Part of Jajrud Watershed).
Kasanin-Grubin, M., & Bryan, R., 2007. Lithological properties and weathering response on badland hillslopes. Catena, 70(1), 68-78.
Kasanin-Grubin, M., 2013. Clay mineralogy as a crucial factor in badland hillslope processes. Catena, 106, 54-67.
Kašanin-Grubin, M., Vergari, F., Troiani, F., & Della Seta, M., 2018. The role of lithology: Parent material controls on badland development. In Badlands dynamics in a context of global change (pp. 61-109). Elsevier.
Martínez-Murillo, J. F., & Nadal-Romero, E., 2018. Perspectives on badland studies in the context of global change. In Badlands Dynamics in a Context of Global Change (pp. 1-25). Elsevier.
Mohammady, M., 2022. Badland erosion susceptibility mapping using machine-learning data mining techniques, Firozkuh watershed, Iran.
Moreno-de las Heras, M., & Gallart, F., 2018. The origin of badlands. In Badlands Dynamics in a Context of Global Change (pp. 27-59). Elsevier.
Nadal-Romero, E., & García-Ruiz, J. M., 2018. Rethinking spatial and temporal variability of erosion in badlands. Badlands Dynamics in a Context of Global Change, 217-253.
NadalRomero, E., RodríguezCaballero, E., Chamizo, S., Juez, C., Cantón, Y. and GarcíaRuiz, J.M., 2022. Mediterranean badlands: Their driving processes and climate change futures. Earth Surface Processes and Landforms, 47(1), pp.17-31..
Parker, G. G., Higgins, C. G., & Wood, W. W., 1990. Piping and pseudokarst in drylands. Geological Society of America Special Paper, 252, 77-110.
Singh, N., Jha, M., Tignath, S., Singh, B.N. and Maddheshiya, S.K., 2021. Evaluation of neotectonic signatures and sequencing of morphotectonic events in the badlands of the Mandakini River watershed, Chitrakoot, India. Environmental Earth Sciences, 80(12), pp.1-17.
Summa, V., Tateo, F., Medici, L., & Giannossi, M. L., 2007. The role of mineralogy, geochemistry and grain size in badland development in Pisticci (Basilicata, Southern Italy). Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 32(7), 980-997.
Tinkler, K. J., 2013. Knickpoint In; Encyclopedia of Geomorphology ed. By; A. S. Goudie,595-596.
Walker, R. T., Talebian, M., Sloan, R. A., Rasheedi, A., Fattahi, M., & Bryant, C., 2010. Holocene slip-rate on the Gowk strike-slip fault and implications for the distribution of tectonic strain in eastern Iran. Geophysical Journal International, 181(1), 221-228.
Walker, R., & Jackson, J.,2002. Offset and evolution of the Gowk fault, SE Iran: a major intra-continental strike-slip system. Journal of structural Geology, 24(11), 1677-1698.
White, W. B. 1988. Geomorphology and hydrology of karst terrains.
White, W.B., 1988. Geomorphology and hydrology of karst terrains, Oxford University Press, Newyork.
Yamani, M. and Akbarian, M., 2013. The Effects of sediment characteristics on Piping Development in Makran Flysch formation, Jask Area. Journal of Geography and Environmental Hazards, 2(3).
Younger, P. L., & Stunell, J. M., 1995. Karst and pseudokarst: An artificial distinction. Geomorphology and Groundwater, London: Willey & Sons, 121-142.
Zgłobicki, W., Poesen, J., Daniels, M., Del Monte, M., Guerra, A. J., Joshi, V., & Solé-Benet, A., 2018. Geotouristic value of Badlands. In Badlands Dynamics in a Context of Global Change (pp. 277-313). Elsevier.