بررسی فرونشست زمین با استفاده از سری زمانی تصاویر راداری و ارتباط آن با تغییرات تراز آبهای زیرزمینی (مطالعه موردی: کلان شهر کرج)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری ژئومورفولوژی، دانشگاه خوارزمی.

2 دانشجوی دکتری ژئومورفولوژی، دانشگاه تهران.

10.22034/gmpj.2022.313426.1313

چکیده

تغییرات ارتفاعی رخداده در سطح زمین که غالباً به صورت فرونشست و گاهی بالا آمدگی ظاهر می‌شود، به عنوان یک مخاطرات خاموش ولی جدی در محدودۀ شهرها به حساب می‌آید. در پژوهش حاضر با استفاده از روش سری زمانی‌ SBAS در بازه زمانی 2014 تا 2021 در محدودۀ کلان‌شهر کرج با انتخاب 25 تصویر Sentinel-1 با فاصله زمانی و مکانی مناسب، متوسط سرعت فرونشست و برخاستگی زمین در محدودۀ مورد مطالعه برآورد شد. نتایج آنالیز سری زمانی تصاویر تداخل‌سنجی نشان می‌دهد در کلان‌شهر کرج مقدار تغییرات سطح زمین بین 145- تا 15+ میلی‌متر بوده است و مناطق دارای فرونشست در بخش شمال غربی منطقه مورد مطالعه یعنی مهرشهر می‌باشد که بین 100 تا 145 میلی‌متر فرونشست را ثبت کرده است. برای تعیین عوامل اصلی این رخداد، منطقۀ مهرشهر به طور دقیق‌تری از نظر بهره‌برداری از معادن، فعالیت تکتونیکی، کاربری زمین از نظر ساخت بنا و سازه‌های عظیم و در نهایت تغییرات سطح تراز آب‌های زیرزمینی مورد بررسی قرار گرفت که نتایج نشان داد تنها تغییرات تراز آب زیرزمینی در منطقه روند متناظری با رخداد فرونشست در منطقۀ مهرشهر دارد . برای بررسی علل و عوامل روند کاهشی سطح تراز آب‌های زیرزمینی ، بارش منطقه نیز طی 6 سال گذشته مورد بررسی قرار گرفت که نتایج نشان از کاهش بارش میانگین در این دورۀ زمانی دارد که می‌تواند در کنار برداشت آب زیرزمینی حتی با حفظ روند ثابت، آثار نامطلوبی بر تغذیۀ آب‌های زیرزمینی و در نهایت رخداد فرونشست برجای گذارد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of land subsidence, using time series of radar images and its relationship with groundwater level changes (Case study: Karaj metropolis)

نویسندگان [English]

  • Zahra Ranjbar Barough 1
  • mohamad fathallahzadeh 2
1 University of Kharazmi
2 Faculty of Geography, University of Tehran
چکیده [English]

Introduction

The Earth's solid crust has not been fixed throughout the history of geology but is constantly changing under the influence of internal and external factors. These elevation changes in the form of subsidence and elevation significantly increase the trend of environmental hazards that affect of these hazards causes severe damage to the natural environment and human effects (Zare Kamali et al., 2017).

According to the US Geological Survey, the phenomenon of subsidence involves the collapse or subsidence of the earth's surface, which can have a small displacement vector, which is said to occur gradually and instantly on a large scale (Geological Survey, 2011). The most important cause of subsidence of surface areas in sedimentary basins of arid and semi-arid regions is the compaction and compaction of sediments due to improper extraction of groundwater aquifers (Zhou et al., 2015). If wet clay layers are located between the sand layers, this phenomenon will be observed more widely and acutely (Liu et al., 2006). Land subsidence usually occurs with a time delay after prolonged abstraction of groundwater resources (Scott, 1979). The amount of subsidence depends on the thickness and compressibility of the layers, the duration of loading, the degree and type of stress (Signa et al., 2014).



Research data

The purpose of this study is to monitor land surface changes and identify areas with subsidence and uplift and identify the rate of these changes in the area and finally to investigate the causes and factors affecting the occurrence or exacerbation. For this purpose, first the Sentinel-1 radar image series with suitable time and place difference (maximum 150 meters) including 25 images (Table 1) in the period 2014 to 2021 with Ascending direction and also 12.5 meters Dem related to ALOS PALSAR sensor from the space agency site. Europe (Vertex) was prepared.

In addition to radar data, information about the trend of changes in the level of piezometric wells in the region and also the average monthly precipitation of the region to compare and investigate the causes of subsidence in the study area were provided by the Water Resources Management Company and the Meteorological Organization, respectively.



Methodology

In the present study, using the SBAS time series method in the period 2014 to 2021 in the metropolitan area of Karaj by selecting 25 Sentinel-1 images with appropriate time and place distance, the average subsidence velocity, and land subsidence in the study area was estimated.

To determine the main factors of this event, the study area was examined in more detail in terms of mining, tectonic activity, land use in terms of construction of massive structures, and finally changes in groundwater level. Then to investigate the causes and factors. The decreasing trend of groundwater level and precipitation in the region during the last 6 years was also examined.

Results and Discussion

The results of time series analysis of interferometric images show that in Karaj metropolis the number of land surface changes was between -145 to +15 mm and the areas with subsidence in the northwestern part of the study area are Mehrshahr which recorded subsidence between 100 and 145 mm. To determine the main factors of this event, the Mehrshahr region was examined more precisely in terms of mining, tectonic activity, land use in terms of construction of buildings and massive structures, and finally changes in groundwater level, which showed that only water level changes. Underground in the region has a trend corresponding to subsidence in the Mehrshahr area. To investigate the causes and factors of the declining trend of groundwater level, rainfall in the region during the last 6 years was examined. On groundwater recharge and eventually subsidence.

Conclusion

The importance and increasing monitoring of land status, especially in order to identify the occurrence of subsidence that has occurred in recent years and following the drought and over-exploitation of groundwater resources have caused more attention by researchers in this regard. In the present study, due to the importance of the subject and the study area, the rate of subsidence and its relationship with groundwater level changes were evaluated. The results showed that in the metropolis of Karaj in the period of 6 years 2014 to 2021, the highest rate of land movement was between -145.27 to +15 mm.

Therefore, according to the results of the present study and the direct relationship between subsidence in Karaj metropolis with groundwater decline, it seems necessary to monitor the use of groundwater in the region, especially in agriculture, because the current trend in the use of groundwater Recent droughts will lead to irreparable risks of subsidence in the region.

کلیدواژه‌ها [English]

  • interference
  • groundwater level
  • time series
  • subsidence
  • Karaj
  • افضلی، ع.، شریفی کیا، م. و شایان، س.، 1392 ، ارزیابی آسیب پذیری زیرساخت ها و سکونت‌ها از پدیده فرونشست زمین در دشت دامغان ، فصلنامه ژئومورفولوژی کاربردی ایران، سال اول شماره اول،صص73-61.
  • رنجبر باروق، ز. (1398)، تبیین نقش ژئومورفولوژی در آمایش کلان‌شهر کرج، رساله دکتری دانشکده علوم جغرافیایی دانشگاه خوارزمی.
  • روزبان، ع.،1395 ، بررسی فرونشست زمین با استفاده از روش تداخل سنجی تفاضلی راداری با بکارگیری تصاویر سنجنده جدید SENTINEL ، پایان نامه کارشناسی ارشد مهندسی نقشه برداری - گرایش سنجش از دور، دانشکده مهندسی عمران و نقشه برداری گروه مهندسی نقشه برداری، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته.
  • زارع کمالی، م.، الحسینی المدرسی، ع. و نقدی، ک.، ، 1396. مقایسه میزان جابجایی عمودی زمین با استفاده از الگوریتم SBAS در باندهای راداری X و C (مطالعه موردی:اراضی تهران)، سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، سال هشتم، شماره 3، صص 104-120.
  • شریفی کیا، م.، 1391 ، تعیین میزان فرونشست زمین به کمک تداخل سنجی راداری در دشت نوق و بهرمان، آمایش و فضا ، دوره شانزده، شماره 3 ،صص77-56.
  • صفاری، ا.، جعفری، ف.، توکل، م.، 1395 ، پایش و فرونشست زمین و ارتباط آن با آب زیرزمینی مطالعه موردی دشت شهریار و کرج، پژوهش های ژئومورفولوژی کمی، سال پنجم، شماره 2،صص93-82.
  • یمانی، م.، نجفی, ا. و عابدینی، م.، 1388 ، ازتباط فرونشست زمین و افت آب زیرزمینیدشت قره بلاغ فسا، فصلنامه علمی پژوهشی جغرافیا دوره 1 ، صص 27-9.
  • Afzali A, Sharifi-Kia M, And Shayan S. Assessment of Infrastructure and Settlement Vulnerability from Land Subsidence in Damghan Plain, Iranian Journal of Applied Geomorphology.2013; 1(1) .
  • Alipour, S., Motgah, M., Sharifi, M. A. & Walter, T. R. (2008). InSAR time series investigation of land subsidence due to groundwater overexploitation in Tehran, Iran. 2008 Second Workshop
  • on Use of Remote Sensing Techniques for Monitoring Volcanoes and Seismogenic Areas,track 414, 1-5. https://doi.org/10.1109/USEREST.2008.4740370.
  • Bates, R. L., and Jackson, J. A., )1980(. “Glossary of Geology.” American.Scott, R.F. (1979). Subsidence-revaluation and prediction of subsidence. Saxema, S.K., Process Conference, ASCE, Gainsville, USA.
  • Bhattarai, R., Alifu, H., Maitiniyazi, A. & Kondoh, A. (2017). Detection of land subsidence in Kathmandu valley, Nepal, using DInSAR technique, Land, 6(2), 39-54.
  • Cigna, F., Bateson, L.B., Jordan, C.J., & Dashwood, C. (2014). Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: Nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery. Remote Sensing of Environment, 152, 441–466.
  • Chatterjee R S, Shailaja Thapa K B, Singh G,Varunakumar E, Raju V R (2015) Detecting,mapping and monitoring of land subsidence in Jharia Coalfield, Jharkhand, India by spaceborne differential interferometric SAR, GPS and precision levelling techniques. Journal of Earth System Science124(6):1359-1376.

 

  • Calo, F., Notti, D., Galve, J.P.,Abdikan, S., Gorum, T., Pepe, A. & Balik, F. (2017). DInSAR based detection of land subsidence and correlation with groundwater depletion in Konya plain, Turkey, Remote sensing, 9(1), 83-98.
  • Davoodijam, M., Motagh, M., & Momeni, M. (2015). Land subsidence in Mahyar Plain, Central Iran, investigated using Envisat SAR Data. Proceedings the 1st International Workshop on the Quality of Geodetic Observation and Monitoring Systems (QuGOMS'11). Springer.
  • Dong, J., Zhang, L., Tang, M., Liao, M., Xu, Q., Gong, J., & Ao, M. (2018). Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: A case study of Jiaju landslide in Danba, China. Remote Sensing of Environment, 205,180–198.
  • Goorabi, A., Karimi, M., Yamani, M., Perissin, D.(2020). Land subsidence in Isfahan metropolitan and its relationship with geological and geomorphological settings revealed by Sentinel-1A InSAR observations, Journal of Arid Environments,Vol: 181, 104238.
  • Guoqing Y, Jingqin M (2008) D-InSAR technique for land subsidence monitoring. Earth Science Frontiers 15(4):239-243.
  • Hooper A J (2007) Persistent scatter radar interferometry for crustal deformation studies and modeling of volcanic deformation. Journal of Geophysical Research 112:1-21.
  • Haghshenas Haghighi, M., Motagh, M., (2021) Land Subsidence Hazard In IRAN Revealed By Country-Scale Analysis Of Sentinel-1 INSAR.
  • Liu, C.W., Lin, W.S., & Cheng, L.H. (2006). Estimation of land subsidence caused by loss of smectiteinterlayer water in shallow aquifer systems. Hydrogeology, 14(4), 508-525.
  • Liora Furst.S.,Doucet,S., Vernant,P., Champollion,C., and Carme,J.,20201, Monitoring surface deformation of deep salt mining in Vauvert (France), combining InSAR and leveling data for multi-source inversion, Solid Earth, 12, 15–34.
  • Moatag M, Davoodi J, Momeni M. Hashemi M. Discovery and representation of subsidence of Mahyar plain of Isfahan by interferometry, Extended Scientific-Engineering Survey and Spatial Information. 2012; 3(2).
  • Peter, H., Jaggi, A., Fernandez, J., Escobar, D., Ayuga, F., Arnold, D., Wermuth, M., Hackel, S., Otten, M., Simons, W., Visser, P., Hugentobler, U., & Femenias, P. (2017). Sentinel-1A – First precise orbit determination results. Advances in Space Research, 60(5), 879–892.
  • Prati, C., Ferretti, A., & Perissin, D. (2010). Recent advances on surface ground deformation measurement by means of repeated space-borne SAR observations. Geodynamics, 49 (3–4), 161-170.
  • Pacheco, J., J. Arzate, E., Rojas, M., Arroyo, V.,& Yutsis G. Ochoa. 2006. Delimitation of ground failure zones due to land subsidence using gravity data. Engineering Geology, 84(40636): 143-160.
  • Rateb, A., Abotalib, Z., (2020) Inferencing the land subsidence in the Nile Delta using Sentinel1 satellites and GPS between 2015 and 2019, Science of the Total Environment 729:1-10.
  • Salehi, R., Ghafoori, M., Lashkaripour, G.R., & Dehghani, M. (2013). Evaluation of land Subsidence in Southern Mahyar Plain Using Radar Interferometry. Irrigation and Water Engineering, 3(11), 47-57 (In Farsi).
  • USGS (United States Geological Survey), Research and Review Information Located, Assess on September 2011:http://water.usgs.gov/ogw/pubs/fs00165.
  • Zhu, L., Gong, H., LI,X., Wang, R., Chen, B., Dai, Z., & Teatini, P. (2015). Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Engineering Geology, 193, 243–255.
  • Zhang, Y., Wang, Z., Xue, Y., Wu, J., & Yu, J. (2016). Mechanisms for earth fissure formation due to groundwater extraction in the Su-Xi-Chang area, China. Bulletin of Engineering Geology and the Environment, 75(2), 745-760.
  • https://waterhouse.ir/news/2171/29