پهنه‌بندی خطر زمین‌لغزش از طریق ارزیابی متغیرهای محیطی با استفاده از مدل تحلیل شبکه (مطالعه موردی: شهرستان بیجار)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه کردستان

2 دانشگاه پیام نور

چکیده

شهرستان بیجار در شمال شرق استان کردستان یکی از مناطق مرتفع و کوهستانی است که از پتانسیل بالایی برای حرکات دامنه‌ای برخوردار است. اگر این فرایند به‌صورت علمی مطالعه نگردد یکی از مخاطرات جدی برای توسعه محسوب می‌گردد و برنامه‌ریزی را با مشکل مواجه می‌کند. این پژوهش با هدف شناسایی سهم متغیرهای مختلف بر روی زمین‌لغزش به‌عنوان یکی از حرکات دامنه‌ای و پهنه‌بندی آن در محدوده شهرستان بیجار صورت گرفت. بدین منظور ابتدا مطالعات کتابخانه‌ای برای شناسایی معیارهای تأثیرگذار در این فرایند انجام شد. با توجه به پیشینه تحقیق و داده‌های موجود معیارهای شیب دامنه، جهت شیب، کاربری اراضی، لیتولوژی، تراکم زهکش، فاصله از جاده و ارتفاع برای بررسی این فرایند انتخاب شدند. سپس معیارها باهم مقایسه و وزن آن‌ها در زمین‌لغزش تعیین گردید. برای تعیین وزن نهایی معیارها و زیر معیارها، ابرماتریس با استفاده از نرم‌افزار Super Decision تشکیل داده شد. وزن‌های نهایی جهت تلفیق، همپوشانی لایه‌ها، اجرای مدل ساختار شبکه و نقشه پهنه‌بندی بکار رفت. سپس محدوده مطالعاتی بر اساس مدل موجود(ANP < /span>) به لحاظ خطر زمین‌لغزش به پنج منطقه خطر تقسیم گردید. نتایج پژوهش نشان داد که  41 درصد از محدوده شهرستان بیجار جزو مناطق دارای قابلیت خطر محسوب می‌شود. نتایج دقیق­تر نشان‌ داد که از بین متغیرهای محیطی مؤثر، فاصله از گسل و ارتفاع، بیشترین و کاربری اراضی کمترین تأثیر را در زمین‌لغزش در محدوده شهرستان بیجار دارند. نتایج حاصل از صحت­سنجی نیز نشان­ داد که همپوشانی مناسب بین پهنه­بندی و نقاط زمین­لغزش موجود بوده و بنابراین مدل به کار گرفته‌شده کارا بوده و نتایج آن در نظام برنامه­ریزی و پایداری محیطی منطقه می­تواند به کار گرفته شود.  

کلیدواژه‌ها


عنوان مقاله [English]

Landslide hazard zonation by evaluating environmental variables using network analysis (case study: Bijar city)

نویسندگان [English]

  • hadi nayyeri 1
  • mohamadreza karami 2
  • mamand salari 1
1 kordestan university
2 payam noor university
چکیده [English]

Introduction:
Predicting landslides in a region, in addition to the reduction of risks and losses caused, can be useful in analyzing and forecasting the development of a region. Many factors are involved in the occurrence of these natural phenomenon. In addition to natural factors such as lithology, tectonics and climate, human role is also significant.Identifying these factors and landslide hazard zonation can help in better evaluating of area potential talents. And it divides the area in terms of risk to the several sub-districts to make planning easier. Iran is largely due to the mountainous topography, the tectonic and seismic activity has high natural potential for extensive landslides.Kurdistan province is the third largest province in terms of landslide after Mazandaran and Golestan. If the ranking criterion is the area, the province is ranked the highest.Bijar city in the Kurdistan province, with a combination of factors mostly mountainous topography, climatic and lithological conditions and locating between two fault of Tabriz in East and Zarineh River in the West which a large number of subdirectories are between these two faults, has great potential for the occurrence of extensive range of landslides.In recent years, extensive researches have been carried out by scientists including geomorphologs, with the aim of identifying risk factors for landslide hazard zonation and also to choose the best model for optimal management of the area.The study, amid at the investigating the slide system in the Bijar area and the importance of effective factors, has applied ANP method as a new model in the landslide.
 
Methodology
General method of this research is a combination of theoretical studies, fieldwork along with the application of model and software statistical analysis.To achieve the goal, first, the effective layers of slope, aspect, elevation, distance from fault, distance from roads, distance from the river, floodway density, lithology and land use in GIS were prepared. And then weighting to the sub-criteria within the group and the criteria between groups were performed.In the next step, available weights were put into Super Decision. Matrix and final weighting, according to input data, were done by the software to reduce the high rate of error.Finally, by pooling layers, landslide hazard zonation map was prepared on the basis of the range model with high risk, relatively high risk, medium risk, relatively low risk and low risk. In the last step, the assessment and verification of ANP model was done with real data to determine how well the model for the area is.
Discussion
To achieve the goal, binary comparison of each of the main criteria and sub-criteria was performed based on a quantitative scale 9 hours.In comprising the criteria, one of the criterion was controlled to gain its importance and its special vector. After comparing the criteria and doing the matrix, their adjustment coefficient was controlled which was not over 0/1, considered by the Thomas hour.After the comparison, their special vector was put into Super Decision in the form of raw data and were used as the imbalanced matrix.Then, imbalanced super matrix became balanced by multiplying into cluster matrix. In the next step, to show and provide significant weight of parameters, the balanced matrix was limited.In the final step, the vector of ultimate importance was normalized and contribution of each of the variables was presented in landslides. These numbers were obtained as a decimal and between one and zero which, in fact, are as the same criteria in effect.The results showed that the distance from the fault has the greatest impact and land use has less impact on the occurrence of landslide and landslide zonation. Finally, in Arc GIS using model data of ANP, the final map was drawn which is the same zonation map.Reviewing the criteria affecting landslide of the area, using ANP, showed that the impact of the fault and height above sea level is more than the other criteria on the process.In the final stage of the study, to evaluate the effectiveness of the model as well as the accuracy using GIS, the landslide hazard zonation map was prepared through integrating and comparing the amount of overlap. The results showed that 94 landslides are at the relatively high and relatively high risk range which shows the accuracy of the study.
Conclusion
Zoning and mapping out of landslide within the Bijar city shows that Bijar city and its dependencies are relatively disposed and susceptible to landslides.Systematic results, based on zoning and validation, showed that 41 percent of the study area is at relatively high and high risk that, in the planning process, should be taken into consideration through the assessment of variables.Validation results showed that the ANP, according to network analysis model is successful and can be used in other regions of Iran.

کلیدواژه‌ها [English]

  • zonation
  • Landslide
  • GIS
  • Network analysis
  • Bijar
  • احمدی، حسن؛ اسمعیلی عوری، اباذر؛ فیض نیا، سادات و محسن شریعت جعفری، 1382، پهنه‌بندی خطر حرکات توده‌ای با استفاده از روش رگرسیون چند متغیره (MR)، تحلیل سلسله مراتبی (AHP) مطالعه موردی حوضه آبریز گرمی، مجله منابع طبیعی ایران. جلد 56. شماره 4.
  • اصغری، کلجاهی، نمکچی، فاطمه و عبدالرضا واعظی هیر، 1395، پهنه­بندی خطر زمین­لغزش در منطقه غرب شهرستان خوی به روش آنبالاگان، نشریه جغرافیا و برنامه‌ریزی، سال20، شماره 56.
  • ایزانلو، اسماعیل، 1376، بررسی قابلیت داده‌های سنجش‌ازدور و سیستم اطلاعات جغرافیایی برای پهنه‌بندی خطر حرکات توده‌ای در حوضه رودخانه بیدواز، پایان‌نامه کارشناسی ارشد، گروه جغرافیا، دانشگاه تربیت مدرس.
  • بهنیافر، ابوالفضل، قنبرزاده، هادی و محمد رضا منصوری دانشور،1388، پهنه‌بندی خطر زمین‌لغزش و ناپایداری دامنه‌ای به روش AHP  و احتمال (مطالعه موردی: حوضه آبریز رودخانه گنگ، دامنه شمالی بینالود)، مجله فضای جغرافیایی، سال نهم، شماره 27.
  • خدائی قشلاق، فاطمه و اسداله حجازی، 1395، پهنه­بندی خطر وقوع زمین­لغزش در محدوده کلیبر­چای با استفاده از روش تحلیل شبکه ANP، دومین کنگره بین­المللی علوم زمین و توسعه شهری، تبریز.
  • روستایی، شهرام، 1383، بررسی علل وقوع زمین­لغزش در روستای نصیرآباد ورزقان (آذربایجان شرقی) با استفاده از روش‌های کمی، فصلنامه مدرس علوم انسانی، دوره هشتم، دوره 8، شماره1.
  • زبردست، اسفندیار، 1389، کاربرد فرآیند تحلیل شبکه‌ای (ANP) در برنامه‌ریزی شهری و منطقه‌ای، نشریه هنرهای زیبا- معماری و شهرسازی، شماره 41.
  • سوری، سلمان، لشکری پور، غلامرضا، غفوری، محمد و طاهر فرهادی نژاد، 1392، اولویت‌بندی عوامل مؤثر بر زمین­لغزش و تهیه نقشه خطر با استفاده از مدل AHP در استان لرستان، مجله انجمن زمین‌شناسی مهندسی ایران، جلد 6، شماره 1 و 2.
  • شادفر، صمد، یمانی، مجتبی و سید محمد نمکی، 1384، پهنه­بندی خطر زمین­لغزش با استفاده از مدل‌های ارزش اطلاعاتی و LNRF، در چالکرود، مجله مهندسی و مدیریت آبخیزداری، جلد 3، شماره 1.
  • طالبی، علی و محمدرضا متولی، 1395، بررسی زمین­لغزش­های طبیعی و حاشیه جاده با استفاده از مدل فرایند محور پایداری سطحی دامنه(مطالعه موردی: محدوده محور ساری- کیاسر)، فصلنامه زمین­شناسی ایران، سال10، شماره 37.
  • کرم، امیر، عبدالهی فوزی، حسین و حسین محمودی، 1389، ارزیابی و پهنه­بندی حساسیت به زمین­لغزش با استفاده از مدل شبکه­های عصبی مصنوعی مطالعه موردی: حوضه آبریز جاجرود(شمال شرق تهران)، مجله محیط جغرافیایی، سال یکم، شماره نخست.
  • عابدینی، موسی و بهاره قاسمیان، 1394، پهنه­بندی خطر زمین­لغزش در شهرستان بیجار به روش تحلیل سلسله­مراتبی، نشریه جغرافیا و برنامه­ریزی، سال 19، شماره 52.
  • عظیم پور، علیرضا، صدوق، حسن، دلال اوغلی، علی و محمد­رضا ثروتی، 1388، ارزیابی مدل AHP در پهنه‌بندی خطر زمین‌لغزش (مطالعه موردی: حوضه آبریز اهر چای)، مجله فضای جغرافیایی، شماره26.
  • علیجانی، بهلول، قهرودی، منیژه و ابوالقاسم امیر احمدی، 1386، پهنه‌بندی خطر وقوع زمین­لغزش در دامنه‌های شمالی شاه جهان با استفاده از GIS، فصلنامه تحقیقات جغرافیایی، دوره 22، شماره1(پیاپی 84).
  • علی‌محمدی، صفیه، پاشایی، عباس و شعبان شتایی جویباری، 1386، ارزیابی کارایی مدل‌های پهنه‌بندی خطر زمین­لغزش در حوضه سید کلاته رامیان، مجله پژوهش‌های حفاظت آب‌وخاک، جلد 16، شماره 1.
  • قاسمیان، بهاره، 1391، پهنه‌بندی خطر وقوع زمین­لغزش با استفاده از مدل آماری رگرسیون لجستیک، مطالعه موردی: (استان کردستان- شهرستان بیجار)، پایان‌نامه کارشناسی ارشد، دانشکده علوم انسانی، دانشگاه محقق اردبیلی.
  • مقیمی، ابراهیم، باقری سید شکری، سجاد و طاهر صفرراد، 1391، پهنه­بندی وقوع زمین­لغزش با استفاده از مدل آنتروپی(مطالعه موردی: تاقدیس نسار، زاگرس شمال­غربی)، پژوهش­های جغرافیای طبیعی، دوره 44، شماره 79.
  • ملکی، امجد و علی قربان پور، 1387، پهنه­بندی خطر زمین­لغزش حوضه چرمله شهرستان سنقر استان کرمانشاه، نشریه جغرافیا و توسعه، دوره 6، شماره پیاپی 12.
  • میرصانعی، رضا و محمد­رضا مهدی فر، 1385، روش‌ها و معیارهای بهینه جهت تهیه نقشه‌های پهنه‌بندی خطر زمین­لغزش، پژوهشکده سوانح طبیعی.
  • نیری، هادی و هژیر محمدی، زیرچاپ، تحلیل آماری زمین‌لغزش (مطالعه موردی: شهرستان بیجار)، نشریه دانش مخاطرات.
  • نیک‌اندیش، نسرین، 1376، نگرشی بر اهمیت حرکات توده‌ای زمین در ایران، نشریه جهاد سازندگی، شماره 155، سال دوازدهم.
  • یمانی، مجتبی، حسن‌پور، سیروس، مصطفایی، ابوالفضل و مجید شادمان رود پشتی، 1391، نقشه پهنه‌بندی خطر زمین­لغزش در کارون بزرگ با استفاده از مدل AHP، جغرافیا و برنامه‌ریزی محیطی، سال 23، پیاپی48، شماره 4.
  • Anbalgan, R., 1992, Landslide hazard evaluation mapping in mountain terrain, Engineering geology, Vol.32, pp. 269-277. 
  • Berberian, M., King G. C. P., 1981, Towards a paleogeography and tectonic evolution of Iran, Canadian Journal of Earth Sciences, Vol. 18, No. 2, pp. 210-265.
  • Bulut, F., Boynukalin, S., Tarhan, F., Ataoglu, E., 2000, Reliability of Landslide Isopleth Maps, Bulletin of Engineering Geology and the Environment, Vol. 58, Issue. 2, pp. 95-98.
  • Chen, W., He, B., Zhang, L., Nover, D., 2016, Developing an integrated 2D and 3D WebGIS based platform for effective landslide hazard management , International Journal of Disaster Risk Reduction, Vol. 20, pp. 28-38.                                                                    
  • Dai, F. C., Lee, C. F., Xu Z. W., 2001, Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong, Environmental Geology,Vol. 40, Issue. 3, 381-391.
  • Wang, Y., Bouten, W., Chen, Q., 2015, using statistical Learning Algorithms in Regional Landslide Susceptibility Zonation with Limited Landslide Field Data, Journal of Mountain Science, Vol. 12, Issue. 2, pp. 268-288.
  • Komac, M., 2006, A landslide susceptibility model using the analytical hierechy process method and multivariate statistics in per alpine Slovenia, Geomorphology, Vol. 74, 1, pp.17-28.
  • Melchiorre, C., Tryggvason, A., 2015, Application of a fast and efficient algorithm to assess landslide-prone areas in sensitive clays in Sweden, Natural Hazards and Earth System Sciences, Vol. 15, 12, pp. 2703-2713.
  • Mora, S., Vahrson, W., 1994, Macrozonation methodology for landslide hazard determination, Bulletin of the Association of Engineering Geologists, Vol. 31, 1, pp.49-58. 
  • Ramesh, V.,  Anbazhagan, S., 2015,  Landslide susceptibility mapping along Kolli hills Ghat road section (India) using frequency ratio, relative effect and fuzzy logic models, Environmental Earth Sciences, Vol. 73, 12, pp. 8009-8021.
  • Yalcin, A., 2008, GIS based landslide susceptibility maping using analytical hierarchy process and bivariate statistics in Ardesen(Turkey), Comparisons of result and confirmation catena, Vol. l72, 1, pp. 1-12.