شناسایی مناطق کارستی با استفاده از مدل دمسترشافر و روش فازی (منطقه مورد مطالعه: شمال غرب استان فارس)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه شیراز

2 دانشگاه تهران

چکیده

سرزمینهای کارستی آب اشامیدنی 25 درصد از جمعیت جهان را تامین می کنند. منابع اقتصادی کارست، اهمیت سرزمین های کارستی در کشاورزی و دارا بودن عوامل اقلیمی دیرینه به منظور شناسایی تحولات ژئومورفولوژی مشخص می نماید. از طرفی مطالعه کارست ها در مناطق خشک به دلیل مناطق مناسبی که برای ذخیره سفرهای آب شیرین محسوب می شوند، بسیار مهم به نظر می رسد. با توجه به اهمیت موضوع هدف از این مطالعه تعیین مناطق کارستی با استفاده از الگوریتم جدیدی به نام دمپسترشافر و مقایسه آن با روش فازی می باشد. به منظور تعیین مناطق مستعد کارست از داده های زمین شناسی، فاصله از گسل، بارندگی، ارتفاع، دما، فاصله از رودخانه، شیب در محیط GIS استفاده شد. در روش فازی بعد از تهیه نقشه فازی برای هر یک از پارامترها به روش تحلیل سلسله مراتبی وزن هر یک از لایه ها مشخص شد. نتایج حاصل از مقایسه زوجی در روش تحلیل سلسله مراتبی نشان داد که با توجه به نرخ ناسازگاری 01/0 وضعیت زمین شناسی دارای بیشترین وزن (297/0) و شیب کمترین اهمیت (وزن 045/0) در تعیین مناطق کارستی منطقه مورد مطالعه دارندنتایج حاصل از روش فازی نشان داد که نیمه جنوبی و غرب منطقه احتمال وجود مناطق کارستی بیشتر است. در حالیکه نتایج حاصل از روش دمپسترشافر نشان دادند که مناطق غرب دارای مناطق کارستی بهتری نسبت به سایر مناطق هستند. با مقایسه دو روش و مقایسه آن با میزان فاصله از جاده نشان داد که روش دمپسترشافر دارای دقت بالاتری نسبت به روش فازی می باشد. بطوریکه در روش دمپسترشافر با افزایش سطح اطمینان و کاهش ریسک پذیری احتمال وجود مناطق کارستی کاهش می یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of karst area using Dempster–Shafer theory and Fuzzy method (Case Study: Northwest of Fars Province)

نویسندگان [English]

  • Marzieh Mokarram 1
  • Majid Hojati 2
چکیده [English]

Extended Abstract
Introduction
Karst lands provide water for 25% of the world's population. Karst's economic resources, the importance of karst lands in agriculture for identify geomorphic developments is determined. On the other hand, the study of karsts in arid areas is very important due to the suitable areas for water storage. Recently, numerous studies have been conducted on karst with different models (Bai et al., 2013; Febles-González et al., 2012; Wang et al., 2004; Xu et al., 2015).
Methodology
Considering the importance of the subject, the aim of this study was to determine the karstic regions using a new algorithm called Dempster–Shafer theory and comparing it with fuzzy method. In order to determine the susceptible areas of karst, geological data, distance from fault, rainfall, elevation, temperature, distance from the river, slope in GIS environment were used.
Dempster–Shafer theory
The Dempster–Shafer theory is based on two non-additive evidential measures: belief and plausibility, which can be estimated from basic probability assignment. The value of the basic probability assignment, also called mass, for a set Xi, represented as m(Xi), expresses the amount of evidence supporting the claim that an element of the universal set X belongs to the set Xi. The basic probability assignment is defined on a universal set X as a function of the power set (PX) in the interval [0,1] that satisfies two conditions:  and =: Sets with nonzero mass are called focal elements. Measurement of belief for a set Xi, Bel (Xi), represents the minimum belief in the claim that an element of the universal set X belongs to the set Xi. It satisfies the following conditions:  and Bel (x)=1
Fuzzy-AHP method
The term fuzzy logic was introduced with the 1965 proposal of fuzzy set theory by Lotfi Zadeh. Zadeh, in his theory of fuzzy sets, proposed using a membership function (with a range covering the interval (0,1) operating on the domain of all possible values. For any set X a membership function on X is any function from X to the real unit interval [0,1].
For preparing the fuzzy map for each parameters should definite membership function. A membership function assigns to each object a grade ranging between 0 and 1. The value 0 means that x is not a member of the fuzzy set, while the value 1 means that x is a full member of the fuzzy set. (Mc Bratney and Odeh, 1997): A fuzzy set is an extension of a classical set. If X is the universe of discourse and its elements are denoted by x, then a fuzzy set A in X is defined as a set of ordered pairs:
µA(x) is called the membership function (or MF) of x in A. The membership function maps each element of X to a membership value between 0 and 1.
The Analytic Hierarchy Process (AHP) is a theory of measurement by pairwise comparisons and relies on the judgments of experts to derive priority scales (Saaty, 2008). The first step in the AHP is the estimation of the pertinent data. That is, the estimation of the aij and Wj values of the decision matrix. This is described in the next sub-section.
The weights of importance of the criteria are also determined by using pairwise comparisons. 
 
Results and discussion
The results of the Dempsstrapher method showed that by increasing the level of reliability and reducing the riskiness of the karstic areas, it decreases. Also, the results of the Dempsstrapher model have better results and better dispersion than the fuzzy method. Finally the results showed that the likelihood of karst in the west of the study area was higher than the other parts.
Conclusion
According to the results of DST method, it can be generated karst map with different levels of confidence, which according to the conditions of economic and importance of the subject in the study area can be from one of these maps for management and planning.

کلیدواژه‌ها [English]

  • karstic areas
  • Fuzzy-AHP
  • Dempster–Shafer theory (DST)
  • ثروتی, محمدرضا و عطرین ابراهیمی، ۱۳۹۵، شناسایی اشکال کارستی و تحول آن‌ها از دیدگاه ژئومورفولوژی در منطقه کامیاران با تاکید بر منابع آب، دومین کنگره بین المللی علوم زمین و توسعه شهری، تبریز، شرکت کیان طرح دانش، پژوهشکده جهاد دانشگاهی واحد استان آذربایجان شرقی.
  • شجاع، عاطفه و ضرغام محمدی، 1389، بررسی اثر تغییرات بارندگی بر مشخصات هیدروگراف چشمه‌ی کارستی پیر غار، بیست و نهمین گردهمایى علوم زمین، 9صفحه.
  • شکری، محمد، 1390، بررسی توسعه کارست در حوضه آبگیر چشمه علی دامغان با تلفیق مطالعات هیدروژئولوژیکی (RS و GIS)، استاد راهنما غلامحسین کرمی، دانشگاه صنعتی شاهرود.
  • طاحونی، پوران، 1374، بررسی و شناخت اشکال کارست در منطقه دشت ارژن و کازرون به منظوزر تخمین حجم آبهای زیرزمینی، استاد راهنما فرج الله محمودی، دانشگاه تهران.
  • ملکی، امجد، اویسی مؤخر، محسن، باقری، آرزو، 1395. بررسی قابلیت منابع آب زیرزمینی در سازند کارستی کوه خورین کرمانشاه با تکنیک GIS و روش‌های ژئوفیزیکی. مجله جغرافیا و برنامه ریزی محیطی، پیاپی 65، شماره1. صفحه 134 تا 150.
  • Kuhta, M., Brkić, Ž, & Stroj, A, 2012, Hydrodynamic characteristics of Mt. Biokovo foothill springs in Croatia. Geologia Croatica, 65(1), 41-52.
  • Hughes،AG. ,and Mansour, MM. ,and Robins, NS, Peach, DW, 2006, Numerical modeling of runoff recharge in a catchment in the West Bank. In: MODFLOW and More 2006: Managing Ground-Water Systems،Conference Proceedings, v. 1, Golden, CO،p. 385–389.
  • Radulovic, M. ,and Stevanovic, Z. ,and Radulovic, M, 2012, A new approach in assessing recharge of highly karstified terrains–Montenegro case studies: Environ Earth Sci, v. 65, p.2221–2230،DOI 10.1007/s12665-011-1378-0.
  • Moradi, S., Kalantari, N. and Charchi, A, 2016, Karstification Potential Mapping in Northeast of Khuzestan Province, Iran, using Fuzzy Logic and Analytical Hierarchy Process (AHP) techniques. Geopersia, 6(2), pp.265-282
  • Shafer, G, 1976, A mathematical theory of evidence. Princeton University Press.
  • Sentz K, Ferson S, 2002, Combination of evidence in Dempster–Shafer theory. Technical report. Sandia National Laboratories.
  • Bai, X. Y., S. J. Wang, Xiong K. N, 2013, Assessing spatial-temporal evolution processes of karst rocky desertification land: indications for restoration strategies. Land Degradation & Development 24(1):47–56.
  • Chaabane, S. Ben, M. Sayadi, F. Fnaiech, Brassart, E, 2008, Color Image Segmentation Based on Dempster-Shafer Evidence Theory. Pp. 862–66 in MELECON 2008 - The 14th IEEE Mediterranean Electrotechnical Conference. IEEE.
  • Febles-González, J. M., M. B. Vega-Carreño, A. Tolón-Becerra, Lastra-Bravo, X, 2012. “Assessment of Soil Erosion in Karst Regions of Havana, Cuba. Land Degradation & Development 23(5):465–74.
  • Sánchez-Lozano, Juan M., Carlos Henggeler Antunes, M. Socorro García-Cascales, and Luis Dias C, 2014, GIS-Based Photovoltaic Solar Farms Site Selection Using ELECTRE-TRI: Evaluating the Case for Torre Pacheco, Murcia, Southeast of Spain.” Renewable Energy 66:478–94.
  • Shafer, G, 1976, Dempster-Shafer Theory. International Journal of Approximate Reasoning 21(2):1–2.
  • Wang, S. J., Q. M. Liu, Zhang D. F, 2004, Karst Rocky Desertification in Southwestern China: Geomorphology, Landuse, Impact and Rehabilitation. Land Degradation & Development 15(2):115–21.
  • Xu, E. Q., H. Q. Zhang, Li, M. X, 2015, Object-Based Mapping of Karst Rocky Desertification Using a Support Vector Machine. Land Degradation & Development 26(2):158–67.
  •  Saaty T. L., Vargas L. G, 1998, Diagnosis with Dependent Symptoms: Bayes Theorem and the Analytic Hierarchy Process, Oper. Res., vol. 46, no. 4, pp. 491–502, Aug.
  • Saaty T. L, 1980, The analytic hierarchy process : planning, priority setting, resource allocation. McGraw-Hill International Book Co.