میکرومورفولوژی رسوبات آبرفتی متأثر از فرآیندهای خاک‌زایی، تکنیکی نو در مطالعات ژئومورفولوژی (مطالعه موردی: حوضه آبخیز سقز)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار ژئومورفولوژی، گروه میراث طبیعی، پژوهشگاه میراث فرهنگی و گردشگری، تهران، ایران.

2 دکتری اقلیم‌شناسی، گروه جغرافیا، دانشگاه آزاد اسلامی واحد نور، نور، ایران

10.22034/gmpj.2022.356044.1370

چکیده

شناخت فاکتورهایی که فرآیند تشکیل خاک‌های قدیمی و رسوبات خاک‌زایی کربناتی را در بین نهشته‌های آبرفتی نظم می‌دهند، مورد مهمی برای بازسازی محیط‌های دیرینه، تکامل محیط‌های رودخانه‌ای در شرایط مختلف اقلیمی و در نهایت سناریوهای مدیریتی است. در پژوهش حاضر، به‌منظور انجام مطالعات میکرومورفولوژی خاک، یک پروفیل رسوبی متشکل از خاک قدیمی مدفون، لایه کربنات خاک‌زایی، نهشته‌های دشت سیلابی (کنگلومرا و لنز ماسه‌ای)، نهشته‌های رسوبی منفصل، خاک قدیمی ظاهر شده و نهشته‌های رسوبی عهد حاضر در یکی از شاخه‌های فرعی رودخانه سقز مورد بررسی قرار گرفت. جهت بررسی میکرومورفولوژی خاک، دو نمونه از رسوبات آبرفتی متأثر از خاک‌زایی با حفظ کامل بافت و ساختار خاک برداشت شد. پس از خشک شدن نمونه‌ها، مقاطع نازک از آن‌ها تهیه شده و در ادامه مطالعه، تشریح، تفسیر و عکس‌برداری از آن‌ها با استفاده از میکروسکوپ پولاریزان در دو حالت نور پولاریزه ساده (PPL) و نور پولاریزه متقاطع (XPL) انجام گرفت. نتایج بررسی میکرومورفولوژی رسوبات آبرفتی پلیستوسن پایانی نشان از آغشتگی زمینه به اکسیدهای آهن و تشکیل رگچه‌های کوارتز و اکسید آهن دارد که به‌طور مشخص حاصل فرآیندهای خاک‌زایی برجا در این نوع رسوب می‌باشد. بارزترین تأثیر فرآیندهای خاک‌زایی را می‌توان در تشکیل لایه‌های کربنات متأثر از خاک‌زایی میان رسوبات آبرفتی مشاهده نمود که لایه‌های سخت کلسیتی را به‌وجود آورده است. بر اساس شاخص ژئوشیمیایی محاسبه شدت هوازدگی و یافته‌های میکرومورفولوژی، رسوبات مطالعه شده در این پژوهش، در شرایط آب و هوایی سرد و خشک پلیستوسن پایانی تحول پیدا کرده‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Micromorphology of pedogenically modified alluvial deposit, a new technique in geomorphological studies (Case study: Saqqez Basin)

نویسندگان [English]

  • khabat derafshi 1
  • Hasan Shabaniniah 2
1 Assistant professor, Natural Heritage Department, Research Institute of Cultural Heritage and Tourism
2 Department of Geography, Islamic Azad University of Noor, Noor, Iran
چکیده [English]

Introduction

The soil formation process is a complex interplay between specific pedogenic processes, creating a set of solid-phase pedogenic features. Pedogenic carbonates, containing evidence for paleoenvironmental conditions are widely distributed in arid and semi-arid regions. The heterogeneity of soils and pedogenically modified alluvial deposits and developed from slope deposits can be seen in macroscopic observations of morphological features such as sudden changes within the grain size distribution the presence of rock fragments with different lithology, a significant change of percentage content and/or shape of coarse fragments, various degrees of soil and deposit weathering, and changes in the colour mantle or the soil conciseness. However, transported, displaced and mixed material on slopes can be also efficiently recognized by a number of micromorphological features. Sometimes, even in the absence of macroscopic indications, the analyses of micromorphological features can give even more detailed insight. Unfortunately, micromorphological features in soils or alluvial deposits affected by slope processes have not received much attention in recent years.



Methodology

The section investigated in this study includes the pedogenically modified alluvial sediments was formed in one of the abandoned anabranches of the Saqez River. Saqqez River basin with an area of 835 km2 is located in Saqqez county, Kurdistan province, western Iran. Saqqez River originates from Pierbodagh and Vazneh Mountains, near Baneh, and flows from southwest to northeast towards Saqqez City as a branch of Zarrinehrud River. Zarrinehrud River flows into Urmia Lake. The area has a Mediterranean continental climate, with hot, extremely dry summers and cold, snowy winters. The minimum winter temperature drops to -30 ̊ C and the summer maximum rises to 40 ̊ C. The average annual precipitation is between 350 and 650 mm and relative humidity ranges from 14% to 95%. The area is located at the margin of the northern part of the Sanandaj-Sirjan Zone (SSZ) which is a metamorphic–magmatic belt associated with the Zagros Orogen and part of the Alpine-Himalayan orogenic system. The area is actually at the intersection of Sanandaj-Sirjan, Khoy-Mahabad and Alborz-Azerbaijan Zones. The geology of the area is composed of meta-sedimentary, meta-volcanic and meta-plutonic rocks of SSZ and the sedimentary rocks of Alborz-Azerbaijan Zone.

Two undisturbed sediment blocks from pedogenically modified alluvial deposit unit were collected. Epoxy resin impregnated for micromorphological studies to investigate the origin of sediments, the process and/or agent responsible for deposition of sediments and post-deposition pedogenic features. The intact sediment blocks grabbed from the profile were dried and then vacuum-impregnated in a vacuum desiccator with epoxy resin mixed with hardener and accelerator. Impregnation of micromorphology samples were done in the Soil Micromorphology Laboratory at the Faculty of Natural Resources, University of Tehran. The mammoth-sized thin-sections were made and examined in the Micromorphology Laboratory at Zaminrizkavan Research Co.



Results and Discussion

Thin-section view of resin-impregnated sediment block from pedogenically modified alluvial unit showing dark-colored basaltic constituents in fine-grained groundmass. Although nearly completely eroded away now, this basaltic lithology should have existed once in the Saqqez River basin. Outcrops of Plio-Quaternary basaltic rocks do occur in the nearby regions in West Azerbaijan and East Azerbaijan provinces. Two studied pedogenically modified alluvial deposit samples marked differences in weathering intensities and degree of replacement by clay minerals in two neighboring rock fragments of similar lithological types indicate that part of the weathering effects might be inherited from the source region of the sediments. Aslo micromorphology study of the samples showed highly vesicular basaltic rock fragments (scoria) in fine-grained matrix stained by iron oxides indicating in-situ pedogenic effects.



Conclusion

The mineralogical composition of fluvial sediments and their textures are useful indicators of past environmental conditions. This diversity indicates fluctuations in climate conditions during the Quaternary in most parts of the world. After a period of erosion, the first sedimentation event on the volcanic bedrock in the study section is represented by alluvial sediments apparently as valley fill deposits. This alluvial unit shows alteration features due to subsequent pedogenic processes. Although the unit includes a variety of rock types, the Plio-Quaternary basaltic constituents prevail reflecting denudation of the youngest lithological unit in the source region. Erosion of Plio-Quaternary basaltic rock and transportation from the source region possibly occurred in Pleistocene when the current fluvial system was not developed and sediment transport was largely through flood events; So, the alluvial sediments in this unit could be considered as debris flow or flood deposits. Marked differences in weathering intensities among detrital constituents with the same lithological types are possibly due to inherited weathering features from the source region of the sediments. However, the fine-grained matrix of the sediments partially replaced by iron oxides/hydroxides and replaced by carbonates clearly represent in-situ pedogenic features. The most conspicuous pedogenic feature in this unit is the development of pedogenic carbonates leading to the formation of carbonate nodules and calcic/petrocalcic horizons. A variety of sources for the origin of calcium in pedogenic carbonates could be considered including weathering of andesitic and basaltic volcanic rocks and calcium release from calcium-rich minerals such as plagioclase and calcium-rich minerals in airborne dust.

کلیدواژه‌ها [English]

  • Micromorphology
  • Alluvial Deposits
  • Pedogenic
  • Saqqez Basin
درفشی، خ.، 1398. تحلیل داده‌های ژئوشیمی رسوبات رودخانه‌ای، افق‌های سیمانی کربناته و خاک‌های دیرینه و کاربرد آن در منشاءیابی و هوازدگی شیمیایی (مطالعه موردی: رودخانه سقز)، فصل‌نامه کواترنری ایران، دوره 5، شماره 3، صص 397-421.
سنجری، ص.، فرپور، م.ه.، محمودآبادی، م.، و برخوری، س.، 1400. مطالعه ژنتیکی و میکرومورفولوژی خاک‌های واقع بر سطوح مختلف ژئومورفیک در پلایای جازموریان، آب و خاک (علوم و صنایع کشاورزی)، دوره 35، شماره 3، صص 379-394.
Alonso, P., Dorronsoro, C. and Egido, J.A., 2004. Carbonatation in paleosols formed on terraces of the Tormes river basin (Salamanca, Spain). Geoderma, 118, pp. 261-276. https://doi.org/10.1180/0009855054010157.
Banwart, S., 2011. Save our soils. Nature, 474, pp. 152-151.
Bertran, P. and Texier, J.P., 1999. Facies and microfacies of slope deposits. Catena, 35, pp. 99-121. https://doi.org/10.1016/S0341-8162(98)00096-4.
Bestland, E.A., 2000. Weathering flux and CO2 consumption determined from palaeosol sequences across the Eocene-Oligocene transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 156, pp. 301-326.
Betancur-Corredor, B., Loaiza-Usuga, J.C., Denich, M. and Borgemeister C., 2020. Changes of Technosol properties and vegetation structure along a chrono-sequence of dredged sediment deposition in areas with alluvial gold mining in Colombia. Journal of Soils and Sediments, 20, pp. 2377-2394. https://doi.org/10.1007/s11368-019-02551-9.
Derafshi, K., Amini, S., Hosseinzadeh, M.M., Evans, M. and Fotuhi, E., 2022. Paleoenvironmental reconstruction of Saqqez River basin, western Iran: evidence from quaternary deposits and pedogenic carbonates. Arabian Journal of Geosciences, 15(14), pp. 1-22.
Durand, N., Gunnell, Y., Curmi, P. and Ahmad, S.M., 2007. Pedogenic carbonates on Precambrian silicate rocks in South India: Origin and paleoclimatic significance. Quaternary International, 162/163, pp. 35-49.
Durand, N., Monger, H.C. and Canti, M.G., 2010. Calcium carbonate features. In: Stoops G, Marcelino V, Mees F (eds.), Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, Amsterdam, pp. 149-194. https://doi.org/10.1016/C2009-0-18081-9.
Eger, A., Almond, P.C. and Condron, L.M., 2011. Pedogenesis, soil mass balance, phosphorus dynamics and vegetation communities across a Holocene soil chronosequence in a super-humid climate, South Westland, New Zealand. Geoderma, 163(3-4), pp. 185-196.
Govers, G., Vandaele, K., Desmet, P., Poesen, J. and Bunte, K., 1994. The role of soil tillage on soil redistribution on hillslopes. European Journal of Soil Science, 45, pp. 469-478. https://doi.org/10.1111/j.1365-2389.1994.tb00532.x.
Harris, C, and Ellis, S., 1980. Micromorphology of soils in soliflucted materials, Okstindan, Northern Norway. Geoderma, 23: 11-29. https://doi.org/10.1016/0016-7061(80)90046-4.
Harris, C., 1981. Microstructures in solifluction sediments from South Wales and North Norway. Biuletyn Peryglacjalny, 28, pp. 221-226.
Kacprzak A. and Derkowski, A., 2007. Camisoles developed from cover-beds in the Pieniny Mts, southern Poland) and their mineral composition. Catena, 71, pp. 292-297. https://doi.org/10.1016/j.catena.2007.01.004.
Kemp R.A., Tomas P.S., Sayago J.M., Debyshire E., King M. and Wagner L., 2003. Micromorphology OSL dating of the basalt part of the loess-paleosol sequence at La Mesuda in Tucuman province, northwest Argentina. Quaternary International, 106-107, pp. 111-117.
Kemp, R.A., 1998. Role of micromorphology in palaeoecological research. Quaternary International. 51/52, pp. 133-141.
Kemp, R.A., 1999. Soil micromorphology as a technique for reconstructing paleoenvironmental change. pp. 41-71. In: Singh, VI A.S. and Derbyshire (Eds.), Paleoenvironmental Reconstruction in Arid Lands. Balkema Pub., Netherlands.
Kowalska J.B., Zaleski, T., Józefowska, A. and Mazurek, R., 2019. Soil formation on calcium carbonate-rich parent material in the outer Carpathian Mountains - A case study. Catena, 174, pp. 436-451. https://doi.org/10.1016/j.catena.2018.11.025.
Kowalska, J., Kajdas, B. and Zaleski, T., 2017. Variability of morphological, physical and chemical properties of soils derived from carbonate-rich parent material in the Pieniny Mountains (south Poland). Soil Science Annual, 68(1), pp. 27-38. https://doi.org/10.1515/ssa-2017-0004.
Kowalska, J.B., Zaleshki, T. and Mazurek, R., 2020. Micromorphological features of soils formed on calcium carbonate-rich slope deposits in the Polish Carpathians. Journal of Mountain Science, 17(6), pp. 1310-1332. https://doi.org/10.1007/s11629-019-5829-5.
Leopold, E.B. and Clay-Poole, S.T., 2001. Florissant leaf and pollen floras of Colorado compared: Climatic implications. Proceedings of the Denver Museum of Nature and Science, series 4, pp. 17-70.
Moraetis, D., Nikolaos, V., Nikolas, P., Nikolaidis, A., Steve, A., Banwart, S.R., Kercheva, M., Nenov, M., Shishkov, Ruiter, P., Bloem, J., Blum, W.E.H., Lair, G.J., Gaans, P. and Verheul, M., 2015. Sediment provenance, soil development, and carbon content in fluvial and manmade terraces at Koiliaris River Critical Zone Observatory. Soils Sediments, 15, pp. 347-364.
Mücher H., van Steijn, H. and Kwaad, F., 2010. Colluvial and mass wasting deposits. In: Stoops G, Marcelino V, Mees F., eds.), Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, Amsterdam, pp. 37-48. https://doi.org/10.1016/C2009-0-18081-9.
Mücher, H.J. and Morozova, T.D., 1983. The application of soil micromorphology in Quaternary geology and geomorphology. In: Bullock P, Murphy CP (eds.), Soil Micromorphology. Volume 1. Techniques and Applications. AB Academic Publishers, Berkhamsted, UK. pp. 151-194.
Mücher, H.J., De Ploey, J. and Savat, J., 1981. Response of loess materials to simulated translocation by water: micromorphological observations. Earth Surface Processes and Landforms, 6, pp. 331-336. https://doi.org/10.1002/esp.3290060312.
Retallack, G.J. and Krull, E.S., 1999. Landscape ecological shift at the Permian-Triassic boundary in Antarctica. Australian Journal of Earth Sciences, 46(5), pp. 785-812. DOI: 10.1046/j.1440-0952.1999.00745.x.
Retallack, G.J., 1999. Post-apocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney Basin, Australia. Geological Society of America Bulletin, 111, pp. 52-70.
Retallack, G.J., 2001. Soils of the past: An introduction to paleopedology. Blackwell Scientific Publication, Oxford, pp. 404. http://dx.doi.org/10.1002/9780470698716.
Retallack, G.J., 2007. Soils and global change in the carbon cycle over geological time. In Holland H.D. and Turekian, K.K., Editors, Treatise on geochemistry, Pergamon Press, Oxford, 5, pp. 581-605.
Retallack, G.J., Orr, W.N., Prothero, D.R., Duncan, R.A., Kester, P.R. and Ambers, C.P., 2004. Eocene-Oligocene extinction and paleoclimatic change near Eugene, Oregon. Bulletin Geological Society of America, 116, pp. 817-839.
Ruhe, R.V., 1965. Quaternary and paleopedology. Wright H.E. and Frey D.G., Eds.) The Quaternary of the United States. Princeton University Press, Princeton, NJ, pp. 755-764.
Sarmast, M., Farpoor, M.H., Jafari, A. and Esfandiarpour Borujeni, I., 2019. Tracing environmental changes and paleoclimate using the micromorphology of soils and desert varnish in central Iran. Desert, 24(2), pp. 331-353.
Sayyed, M.R. and Hundekari, S.M., 2006. Preliminary comparison of ancient bole beds and modern soils developed upon the Deccan volcanic basalts around Pune (India): potential for paleoenvironmental reconstruction. Quaternary International, 156-157, pp. 189-199.
Scarciglia, F., Tuccimei, P., Vacca, A., Barca, D., Pulice, I., Salzano, R. and Soligo, M., 2011. Soil genesis, morphodynamic processes and chronological implications in two soil transects of SE Sardinia, Italy: Traditional pedological study coupled with laser ablation ICP-MS and radionuclide analyses. Geoderma, 162, pp. 39-64.
Schaetzl, R. and Anderson, S., 2005. Soils genesis and geomorphology. First published, Cambridge University Press, pp. 817.
Sehgal, J.L. and Stoops, G., 1972. Pedogenic calcic accumulation in arid and semiarid regions of the Indo-Gangetic alluvial plain of the erstwhile Punjab (India). Their morphology and origin. Geoderma, 8, pp. 59-72.
Sheldon, N.D. and Retallack, G.J., 2004. Regional paleoprecipitation trends in the Eocene and Oligocene of North America. Journal of Geology, 112, pp. 487-494.
Sheldon, N.D. and Tabor, N.J., 2009. Quantitative paleo-environmental and paleo-climatic reconstruction using paleosols. Earth-Sciences Reviews, 95, pp. 1-52.
Sheldon, N.D., Retallack, G.J. and Tanaka, S., 2002. Geochemical climo-functions from North America soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. Journal of Geology, 110, pp. 687-696.
Solleiro-Rebolledo, E., Sycheva, S., Sedov, S., McClung, E., Rivera-Uria, Y., Salcido-Berkovich, C. and Kuznetsova, A., 2011. Fluvial processes and paleopedogenesis in the Teotihuacan Valley, México: responses to late Quaternary environmental changes. Quaternary International Journal, 233, pp. 40-52.
Srivastava, A.K., Bansod, M.N. and Khare, N., 2021. Calcretes from the Quaternary alluvial deposit of Purna basin, central India: lithological and climatic controls. Rhizosphere, 1818(1), https://doi.org/10.1016/j.rhisph.2021.100343.
Tentori, D., Mancini, M., Milli, S., Stigliano, F., Tancredi, S. and Moscatelli, M., 2022. Compositional, micromorphological and geotechnical characterization of Holocene Tiber floodplain deposits (Rome, Italy) and sequence stratigraphic implications. Sedimentology, 69, pp. 1705-1737. doi: 10.1111/sed.12969.
Thompson, K., 1986. Small-scale heterogeneity in the seed bank of an acidic grassland. Journal of Ecology, 74, pp. 733-738.
Uhl, D., Abuhamed A., Kerp, H. and Bandel, K., 2007. Evidence for paleo-wildfire in the Late Permian paleotropics - charcoalified wood from the Um Irna Formation of Jordan. Review of Palaeobotany and Palynology, 144, pp. 221-230.
Utescher, T. and Mosbrugger, V., 2007. Eocene vegetation patterns reconstructed from plant diversity - a global perspective. Paleogeography, Paleoclimatology, Paleoecology, 247, pp. 243-271.
van Muijsen, W., Govers, G. and van Oost, K., 2002. Identification of important factors in the process of tillage erosion: the case of mouldboard tillage. Soil and Tillage Research, 6, pp. 77-93. https://doi.org/10.1016/S0167-1987(01)00282-3.
van Oost, K., Govers, G. and Desmet, P., 2000. Evaluating the effects of changes in landscape structure on soil erosion by water and tillage. Landscape Ecology, 15, pp. 577-589. https://doi.org/10.1023/A:1008198215674.
Waroszewski, J., Kalinski, K., Malkiewicz M., Mazurek, R., Kozlowski, G. and Kabala, C., 2013. Pleistocene-Holocene cover-beds on granite regolith as parent material for Podzols - An example from the Sudeten Mountains. Catena, 104, pp. 161-173. https://doi.org/10.1016/j.catena.2012.11.006.
Waroszewski, J., Malkiewicz, M., Mazurek, R., Labaz, B., Jezierski, P. and Kabala, C., 2015. Lithological discontinuities in Podzols developed from sandstone cover beds in the Stolowe Mountains (Poland). Catena, 126, pp. 11-19. https://doi.org/10.1016/j.catena.2014.10.034.
Wieder, M., Yaalon, D.H., 1974. Effect of matrix composition of carbonate nodule crystallization. Geoderma, 11, pp. 95-121. https://doi.org/10.1016/0016-7061(74)90010-X.
Wolfe, J.A., 1994. Tertiary climatic changes at middle latitudes of western North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 108, pp. 195-205.
Yaalon, D.H., 1971. Soil forming processes in time and space. PP. 29-39. In: Yaalon, D.H., Ed., Paleopedology Jerusalem. Israel Univercity Press, Israel.
Zamanian, K., Pustovoytov, K. and Kuzyakov, Y., 2016. Pedogenic carbonates: forms and formation processes. Earth Science Reviews, 157: 1-17. https://doi.org/10.1016/j.earscirev.2016.03.003.
Zinck J.A., 2016. The geopelogic approach. In: Zinck, J.A., Metternicht, G., Bocco, G., De Valle, H.F., Eds.), Geopedology: An integration of Geomorphology and Pedology for Soil and Landscape Studies. Springer, p. 556. https://doi.org/10.1007/978-3-319-19159-1.