ارزیابی ناپایداری دامنه ها در ناحیه راه آهن لرستان با استفاده از روش تداخل سنجی تفاضلی راداری (DInSAR )

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ژئومورفولوژی، دانشکده علوم زمین، دانشگاه شهید بهشتی تهران

2 استاد و عضو هیئت علمی ژئومورفولوژی دانشکده علوم زمین دانشگاه شهید بهشتی تهران

3 استادیار و عضو هیئت علمی دانشکده علوم زمین دانشگاه شهید بهشتی تهران

چکیده

ناحیه راه آهن لرستان به دلیل خصوصیات متنوع زمین شناسی نظیر لیتولوژی، تکتونیک، لرزه‌خیزی و شرایط خاص آب و هوایی، ازجمله مناطق دارای پتانسیل زمین لغزش است. بنابراین به منظور شناسایی و برآورد میزان سرعت حرکت مواد دامنه های ناپایدار مشرف به خطوط ریلی ناحیه لرستان در یک بازه زمانی سه ساله از سال 2015 تا 2018 از تصاویر راداری پایین گذر ماهواره Sentinel-1 سازمان فضایی اروپا استفاده شده است. در این پژوهش از نرم افزار SUBSOFT و روش پیشرفته تداخل سنجی تفاضلی ( (DInSARمبتنی بر الگوریتم پیوستگی پیکسل ها (CPT) که توسط کارگروه سنجش از دور دانشگاه پلی تکنیک کاتالونیای اسپانیا (UPC) معرفی شده، برای شناسایی ناپایداری دامنه های مشرف به خطوط ریلی ناحیه لرستان استفاده شده است. تحلیل ها با استفاده از 50 تصویر راداری پایین گذر ماهواره اخیر انجام شد. نتایج این پژوهش نشان داد که داده های راداری و روش پردازش تداخل سنجی تفاضلی به دلیل پوشش گسترده و فراوانی دیتا و دقت بالا، از پتانسیل خوبی برای آشکارسازی ناپایداری دامنه ها و محاسبه میزان جابه جایی آن ها برخوردار می‌باشد. تفسیر نمودارهای سری زمانی نشان داد که بیشترین میزان حرکات مواد دامنه ای در فصول پاییز و بهار اتفاق افتاده و بیشترین میزان حرکت مواد دامنه ای در بازه سالهای 2015 تا 2018 حدود 8/28 سانتیمتر در محدوده ایستگاه تنگ هفت تا تنگ پنج می‌باشد. که نشان دهنده فعال بودن منطقه از لحاظ حرکات دامنه ای است.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment slope instability around Lorestan railway by using differential synthetic aperture radar interferometry (DInSAR)

نویسندگان [English]

  • Amir Afshari 1
  • Manijeh Ghahroudi Tali 2
  • Hasan Sadough 2
  • Mohsen Ehteshami Moin abadi 3
1 PhD student of geomorphology, department of earth science, Shahid Beheshti university of Tehran,
2 Professor of geomorphology, department of earth science, Shahid Beheshti university of Tehran
3 associate professor of tectonic geology, department of earth science, Shahid Beheshti university of tehran,
چکیده [English]

Introduction:
The continuous monitoring of land surface deformation and recognition of susceptible area for slope movements, especially in residential area and traffic infrastructures such as roads and railways, is considered as the most effective factors for reducing losses (human and financial) of environmental hazards such as subsidence and landslide. Several techniques such as global position system (GPS), geodesy, tachometry, Leaser scanning and LIDAR had been used to monitor land surface deformation However, their use is limited in wide area due to high cost, time-consuming, and limited surface coverage. Of course, synthetic aperture radar Differential Interferometry (DInSAR), which can be used in all climate conditions during night and day, covers extended earth surface and possesses high spatial and temporal resolution, is regarded as one of the most precise (precision in millimeter) and Cost-effectiveness remote sensing techniques to recognize and monitor land surface deformations, slow movements and slope instability worldwide. Regarding the mechanism, the phase difference of various SAR images with standard format (SLC), taken at different times from a specific area, are calculated and land displacement along the line of sight (LOD) are precisely estimated. In the present study, in order to overcome the limitations of conventional synthetic aperture radar interferometry (InSAR), SUBSOFT software and differential synthetic aperture radar interferometry (DInSAR) based on coherent pixels’ technique (CPT), which is develoed by the Remote Sensing Laboratory (RSLab) group from the Universitat Politècnica de Catalunya (UPC), were utilized to recognize unstable slopes around Lorestan railway. In this regard, 50 descending sentinel-1 images, corresponding to the period from 2015 to 2018 (obtained from European Space Agency) were analyzed. The rate of slope movements (millimeter per year) in satellite trajectory and maximum displacement (28.8 cm/year) were obtained in Tang-e- Haft to Tang-e-Panj stations, by indicating the activation of area with respect to slope movement. The Lorestan Railway is part of the north-south railway of Iran that is 215 km long. it extends from the Momenabad Station in Markazi province to the Tang-e-Haft Station in Khuzestan province and goes across high Zagros Mountains located in the geographical coordinates of 48°, 15' to 49°, 05 ' E, and the latitudes of 32°, 25' to 33°, 30' N. This region has specific characteristics in terms of slope instability and related geomorphological phenomena due to local and regional characteristic of the active Zagros orogenic belt.
Material Method:

In the present study, conventional methods (satellite images, 3D images derived from google earth software, terrain survey, topographic maps and landslide database of area) and advanced techniques (high precision synthetic aperture radar images ASAR) were used to recognize unstable slopes around Lorestan railway. In fact, conventional methods such as land surveing was utilized to recognize large landslide with rapid movement and advanced techniques such as differential radar interferometry (DInSAR) was used to measure slow movement and identify susceptible parts for landslide. Differential radar interferometry (DInSAR) is considered as one of the most important and usable methods, which measures land surface deformation by using phase difference (∆ɸ) of every pixel from a (SLC) image pair, taken individually from a specific area at different time. Fifty descending radar images from sentinel-1 of European Space Agency were used to recognize slope instability in Lorestan railway during temporal range of 2015 to 2018 (recording time of 14 days, track number of 108 and frame number of 482).

Discussion:

Rate linear map and temporal series of slope material displacement in Lorestan railway were prepared by using differential radar interferometry. In order to facilitate the measurement of slope movements, radar images in the area with 2 km radius were selected for calculation, due to the location of the most landside hazard points in Bisheh to Tange e Haft stations and extracting many points from processing. and the highest displacement rate of 28.8 cm per year was obtained of the Tang-e-7 to Tang-5 stations, and finally Several points susceptible for landslide hazard, obtained from final map, were selected through DInSAR method and controlled by field survey to validate differential radar interferometry. Based on the results, this method is considered as a high precision technique to recognize area possessing hazard of slope movement in wide and mountains area such as Lorestan

Result:

Lorestan railway is considered susceptible for various landslides due to passing through folded and high Zagros mountainous and alternating geological formations with different resistance. Accessing to some slopes, overlooking railway is regarded impossible due to the presence of impassable segments in area under study. Thus, in the present study, new differential radar interferometry was utilized by using low-pass images of sentinel-1 to recognize area having landslide hazard and measure the slow movement of slope material in Lorestan railway. In addition, in order to verify radar data results, 35 vulnerable points overlooking Lorestan railway were recognized through field survey. Based on the results, radar data and differential interferometry are regarded to detect landslide and calculate their displacement value due to wide coverage, abundant data and high precision. The analysis of temporal series diagrams showed that a maximum of slop material movements occurred in the autumn and spring due to higher rainfall in these seasons compared to others

کلیدواژه‌ها [English]

  • Landslide
  • Radar interferometry
  • Lorestan railway
  • CPT
  • DInSAR
  • ملکی راد، زینب (1390). بررسی ساختارهای لرزه ای در استان لرستان، همایش منطقه ای زمین شناسی فلات ایران، 4و5 اسفند ماه، دانشگاه آزاد اسلامی واحد زرند-صص246-238.
  • بلواسی، ایمانعلی، رضایی مقدم، محمد حسین، نیکجو، محمد رضا، ولیزاده، کامران، خلیل (1394). مقایسه مدل شبکه عصبی مصنوعی با فرآیند تحلیل سلسله مراتبی در ارزیابی خطر زمین لغزش، دانش مخاطرات/دوره 2، شماره2 تابستان 1394/ ص250-225.
  • خوانین زاده، نغمه، معتق، مهدی، شریفی، محمد علی (1389). مطالعه و بررسی زمین لغزش با استفاده از تداخل سنجی راداری نشریه علمی-  ترویجی مهندسی نقشه برداری و اطلاعات مکانی، دوره اول.، شماره ٣ .
  • احمد زاده، حسن، روستایی، شهرام، نیکجو، محمد رضا، دهقانی، مریم (1394). برآورد مساحت و حجم تودهی لغزشی با استفاده از تکنیکهای InSAR و مشاهدات GPS (مطالعه موردی پهنه لغزشی روستای گوگرد). پژوهش های ژئومورفولوژی کمی، سال چهارم، شماره 2، صص. 28-18.
  • شیرانی، کورش، سیف، عبدالله، شریفی کیا، محمد (1393). ارزیابی کارایی سنجنده های ASAR و PALSAR به کمک تداخل سنجی تفاضلی در شناسایی و پایش زمین لغزش ها در زاگرس. نشریه علمی-پژوهشی مهندسی و مدیریت آبخیز 3333-303 ، صفحات 822 ، جلد 6 ، شماره 3.
  • روستایی، شهرام، روستایی ، مهاسا، شریفی کیا، محمد، یاراحمدی، جمشید (1392). کاربرد تداخل سنجی تفاضلی راداری در شناسایی و پایش زمین لغزشها، مطالعه موردی:  حوزه آبخیز گرم چای میانه نشریه علمی- پژوهشی مهندسی و مدیریت آبخیز 2331-231 ، صفحات231 ، جلد 5، شمار
  • Atzori, S., 2013. Understanding earthquakes: the key role of radar images. Nucl. Instrum.Methods Phys. Res. 720, 178–181. http://dx.doi.org/10.1016/j.nima.2012.12.005.
  • Aleotti, P., Chowdhury, R., 1999. Landslide hazard assessment: summary review and new
  • perspectives. Bull. Eng. Geol. Environ. 58 (1), 21–44.
  • Berardino, P., Constantini, G., Franceschetti, G., Iodice, L., Pietranera, L., Rizzo, V., 2003. Useof differential SAR interferometry in monitoring and modelling large slope instabilityat Matera (Basilicata, Italy). Eng. Geol. 68 (1–2), 31–51.
  • Berardino, P., Fornaro, G., Lanari, R., Sansosti, E., 2002. A new algorithm for surface deformationmonitoring based on small baseline differential SAR interferograms. IEEETrans. Geosci. Remote Sens. 40, 2375–2383.
  • Berberian,M.,and King,G.C.P.,1981,Towards a palegeography and tectonic evolution of Iran: Canadian Journal of Eearth Sciences, v.18,no.2,p.210-265.
  • Bordoni,M., Bonì,R., Colombo,A., Lanteri,L., Meisina,C. A methodology for ground motion area detection (GMA-D) using A-DInSAR time series in landslide investigations. Catena 163 (2018) 89–110. https://doi.org/10.1016/j.catena.2017.12.013
  • Bovenga,F., Wasowski,J., Nitti, D.O., Nutricato,R., Chiaradia,M.T. Using COSMO/SkyMed X-band and ENVISAT C-band SAR interferometry for landslides analysis. Remote Sensing of Environment 119 (2012) 272–285.https://doi:10.1016/j.rse.2011.12.013.
  • Colesanti, C., & Wasowski, J. (2006). Investigating landslides with space-borne SyntheticAperture Radar (SAR) interferometry. Engineering Geology, 88, 173–199.
  • Colesanti, C., Ferretti, A., Prati, C., & Rocca, F. (2003). Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Engineering Geology Special Issue on Remote Sensing and Monitoring of Landslides, 68(1–2), 3–14.
  • Costantini,M., Ferretti,A., Minati,F., Falco,S., Trillo,F., Colombo,D., Novali,F., Malvarosa,F., Mammone,C., Vecchioli,F., Rucci,F., Fumagalli,F., Allievi,F., Grazia Ciminelli,F., Costabile,S. Analysis of surface deformations over the whole Italian territory by interferometric processing of ERS, Envisat and COSMO-SkyMed radar data.Remote Sensing of Environment 202 (2017) 250–275. http://dx.doi.org/10.1016/j.rse.2017.07.017.
  • Devanthéry,N., Crosetto,M., Cuevas-González,M., Monserrat,O., Barra,A., Crippa,B. Deformation monitoring using Persistent Scatterer Interferometry and Sentinel-1 SAR data. Procedia Computer Science 100 (2016) 1121 – 1126. https://doi.10.1016/J.PROCS. 2016.09.263
  • Di Martire, D., Ascione, A., Calcaterra, D., Pappalardo, G., Mazzoli, S., 2015. Quaternary deformation in SE Sicily: insights into the life and cycles of forebulge fault systems. Lithosphere 7 (5), 519–534. http://dx.doi.org/10.1130/L453.1.
  • Di Martire, D., Iglesias, R., Monnels, D., Centolanza, G., Sica, S., Ramondini, M., Pagano, L.,Mallorquì, J.J., Calcaterra, D., 2014. Comparison between differential SAR interferometryand ground measurements data in the displacement monitoring of the earthdamof Conza della Campania (Italy). Remote Sens. Environ. 148, 58–69. http://dx.doi.org/10.1016/j.rse.2014.03.014.
  • Di Martire,D., Tessitore,S., Brancato,D., Grazia Ciminelli,M., Costabile,S., Costantini,M., Vito Graziano,G., Minati,F., Ramondini,M., Calcaterra,D. Landslide detection integrated system (LaDIS) based on in-situ and satellite SAR interferometry measurements. Catena 137 (2016) 406–421. http://dx.doi.org/10.1016/j.catena.2015.10.002.
  • Dong,J., Liao,M., Xu,Q., Zhang,L., Tang,M., Gong,J. Detection and displacement characterization of landslides using multitemporal satellite SAR interferometry: A case study of Danba County in the Dadu River Basin. Engineering Geology 240 (2018) 95–109. https://doi.org/10.1016/j.enggeo.2018.04.015
  • Duro, J., Closa, J., Biescas, E., Crosetto,M., & Arnaud, A. (2005). High resolution differential interferometry using time series of ERS and ENVISAT SAR data. Proc. of the 6th.Geomatic Week Conference, February 2005, Barcelona, Spain (CDROM).
  • Falcon, N.L., 1974. Southern Iran: Zagros Mountains. In: A. Spencer (Editor), Mesozoic-Cenozoic Belts. Spec.Publ. Geological Society of London, 4, 199-211.
  • Ferretti, A., Prati, C., Rocca, F., 2001. Permanent scatterers in SAR interferometry. IEEETrans. Geosci. Remote Sens. 39 (1), 8–20. http://dx.doi.org/10.1109/36.898661.
  • Fruneau, B., Achace, J., Delacourt, C., 1996. Observation and modeling of the Saint- Etienne-de Tine'e landslide using SAR interferometry. Tectonophysics 265 (3–4),181–190.
  • Gabriel, A. K., Goldstein, R. M., & Zebker, H. A. (1989). Mapping small elevation changesover large areas: Differential interferometry. Journal of Geophysical Research, 94,9183–9191.
  • Hanssen, R. F.  "Radar interferometry: data interpretation and error analysis," Chapter 2, pp. 10-15, Pub.Springer, 2001.
  • Hilley, G.E., Burgmann, R., Ferretti, A., Novali, F., Rocca, F., 2004. Dynamics of slow-moving landslides from permanent scatterer analysis. Science 304, 1952–1955.
  • Hong, Y., Adler, R., and Huffman, G.: Use of satellite remote sensing data in the mapping of global landslide susceptibility, Nat. Hazards, 43, 245–256, 2007b.
  • Hong, Y.; Adler, R.F. and Huffman, G. (2007). An experimental global prediction system for rainfall-triggered landslides using satellite remote sensing and geospatial datasets, IEEE Transactions on Geoscience and Remote, 45: 1671–1680.
  • Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A newmethod formeasuring deformationon volcanoes and other natural terrains using InSAR persistent scatterers.Geophysical Research Letters, 31, L23611. http://dx.doi.org/10.1029/2004GL021737.
  • Infante, D., Confuorto, P., Dimartire, D., Ramondini,M., Calcaterra,D,2016. Use of DInSAR data for multi-level vulnerability assessment of urban setting affected by slow-moving and intermittent landslides. Procedia engineering 158(2016) 470-475.
  • Kiseleva,E., Mikhailov,V., Smolyaninova,E., Dmitriev,P., Golubev,V., Timoshkina,E., Hooper,A., Samiei-Esfahany,S., Hanssen,R. PS-InSAR monitoring of landslide activity in the Black Sea coast of the Caucasus. Procedia Technology 16 (2014) 404 – 413.  doi: 10.1016/j.protcy.2014.10.106.
  • Lagios, E., Sakkas, V., Novali, F., Bellotti, F., Ferretti, A., Vlachou, K., Dietrich, V., 2013. SqueeSAR™ and GPS ground deformation monitoring of Santorini Volcano (1992–2012): tectonic implications. Tectonophysics 594, 38–59. http://dx.doi.org/ 10.1016/j.tecto.2013.03.012.
  • Lazecky,M., Canaslan Comut.,Hlavacova,I.,Gurboga,S.Practical Application of Satellite-Based SAR Interferometry for the Detection of Landslide Activity.procedia earth and Planetry Science 15(2015)613-618. doi: 10.1016/j.proeps.2015.08.113.
  • Lanari, R., Mora, O., Manunta, M., Mallorqui, J.J., Berardino, P., Sansosti, E., 2004. A small baseline approach for investigating deformations on full resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 42, 1377–1386.
  • Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., et al. (1993). The displacement field of the Landers earthquake mapped by Radar Interferometry.Nature, 364, 138–142.
  • Metternicht,G., Hurni,L.,Gogu,R 2005. Remote sensing of landslides: An analysis of the potential contribution to geospatial system for hazard assessment in mountainous environments. Remote Sensing of Environment 98:284-303.
  • Mora, O., Mallorqui, J.J., Broquetas, A., 2003. Linear and nonlinear terrain deformation maps from a reduced set of interferometric sar images. IEEE Trans. Geosci. Remote Sens. 41 (10):2243–2253. http://dx.doi.org/10.1109/TGRS.2003.814657.
  • Novellino, A., Cigna, F., Sowter, A., Syafiudi,M.F., Di Martire, D., Ramondini,M., Calcaterra, D., 2015. Intermittent Small Baseline Subset (ISBAS) InSAR Analysis to monitor landslides in Costa Della Gaveta, Southern Italy. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 26–31 July 2015, Milan, Italy, pp. 3536–3539 http://dx.doi.org/10.1109/IGARSS.2015.7326584.
  • Prati, C., Ferretti, A., & Perissin, D. (2010). Recent advances on surface ground deformation measurement by means of repeated space-borne SAR observations. Journal of Geodynamics, 49, 161–170. http://dx.doi.org/10.1016/j.jog.2009.10.011.
  • Rott, H., & Nagler, T. (2006). The contribution of radar interferometry to the assessment of landslide hazards. Advances in Space Research, 37(4), 710−719. doi:10.1016/j. asr.2005.06.059.
  • Sanabria,M.P., Guardiola-Albert, C., Tomás, R., Herrera, G., Prieto, A., Sánchez, H., Tessitore, S., 2014. Subsidence activity maps derived from DInSAR data: Orihuela case study. Nat. Hazards Earth Syst. Sci. 14, 1341–1360. http://dx.doi.org/10.5194/nhess-14-1341-2014.
  • Strozzi, T., Delaloye, R., Poffet, D., Hansmann, J., Loew, S., 2011. Surface subsidence and uplift above a headrace tunnel in metamorphic basement rocks of the Swiss Alps as detected by satellite SAR interferometry. Remote Sens. Environ. 115, 1353–1360. http://dx.doi.org/10.1016/j.rse.2011.02.001.
  • Usai, S., 2003. A least squares database approach for SAR interferometric data. IEEE Trans.Geosci. Remote Sens. 41 (4), 753–760 (part 1).
  • Wasowski, J., Bovenga, F., 2014. Investigating landslides and unstable slopes with satellite Multi-Temporal Interferometry: current issues and future perspectives. Eng. Geol.174, 103–138. http://dx.doi.org/10.1016/j.enggeo.2014.03.003.