بررسی ارتباط بین شرایط مورفومتریک حوضه و منابع آب زیرزمینی : مطالعه‌ای موردی حوضه‌ای کامیاران

نوع مقاله: مقاله پژوهشی

نویسنده

دانشگاه پیام نور

چکیده

تحلیل‌های مورفومتریک به عنوان یک روش کم هزینه، سریع و قابل اعتماد، امروزه در جنبه‌های مختلف مطالعاتی حوضه‌ها همچون بررسی سیل خیزی، فرسایش، تغییرات کاربری اراضی، مطالعات منابع آب، مدیریت محیط و اجرای پروژه‌های آبی مورد استفاده قرار می‌گیرند. حوضه‌ای کامیاران از تنوع لیتولوژیکی زیادی، ناشی از قرارگیری در زون‌های زمین شناسی زاگرس مرتفع و سنندج - سیرجان برخوردار بوده و این امر باعث ایجاد شرایط مورفومتری خاص در نواحی مختلف این حوضه گردیده است. تفاوت در شرایط مورفومتری مناطق مختلف حوضه تأثیراتی بر منابع آب زیرزمینی حوضه‌ای کامیاران داشته و هدف این پژوهش شناخت این تأثیرات می‌باشد. شبکه‌ی زهکشی حوضه کامیاران از DEM ده متر منطقه استخراج شده و از هفت پارامتر مورفومتری خطی، هفت پارامتر مورفومتری سطحی و سه پارامتر مورفومتری ناهمواری، برای ارزیابی مورفومتری این حوضه استفاده شده است. در ادامه نتایج پارامترهای مورفومتری سه گانه، در نواحی مختلف حوضه با پراکنش چشمه‌ها و میزان آبدهی آنها تطبیق داده می‌شود. نتایج نشان می‌دهد، که حوضه‌ای کامیاران در مراحل آخر جوانی سیکل فرسایش قرار داشته و مقادیر پارامترهای مورفومتریک خطی، سطحی و ناهمواری بیانگر تأثیر شرایط لیتولوژیکی بر پارامترهای مورفومتریک است. نواحی شمالی و مرکزی حوضه دارای پتانسیل کم و مناطق کارستی جنوب حوضه دارای پتانسیل بالای آب زیرزمینی می‌باشند. در واقع پتانسیل منابع آب زیرزمینی در حوضه‌ی کامیاران از شرایط مورفومتریک حوضه تأثیر پذیرفته و پارامترهای مورفومتریک نیز تحت تأثیر شرایط زمین شناسی و ژئومورفولوژیکی حوضه هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the relationship between basin morphometric conditions and groundwater resources: Case study of Kamyaran Basin

نویسنده [English]

  • mansor parvin
چکیده [English]

Introduction
The morphometric characteristics show the morphology of the basins and reflect the geological conditions and geomorphological processes over time (Hurters et al., 1999).Different morphometric characteristics depend on various aspects such as geology, geomorphology, vegetation, climate, etc. (Rapot et al., 2015).The morphometric characteristics of the basin are important in hydrological research such as groundwater potential assessment, groundwater management, basin management, and environmental assessment (Raymond et al., 2017).In recent decades, due to the advancement of computer technology, morphometric studies of the basin are very convenient for the past.The use of GIS and the use of DEM is a precise, quick and inexpensive method for analyzing hydrologic systems (Schmidt and Sandwall, 2004).The Kamyaran basin has a different lithological diversity and different tectonic conditions in different areas of the basin.The geomorphologic conditions of the basin in the southern heights are mainly karstic and in the northern regions of irregular slopes with low permeability.Therefore, the purpose of this research is to identify morphometric effects on groundwater resources of Kamyaran basin.
- materials and methods
In this study, first, using a 10 meter DEM of the basin and utilizing the Arc Hydro tool, the limits of Kamyaran basin and drainage network of the basin were plotted.The Australian method was used to rank the watercourses and use topographic maps of 1: 25000 of the area for the accuracy of the watershed network.Seven parameters of linear morphometry, seven morphometric parameters and three morphometric parameters for rippling were calculated for Kamyaran basin.Based on the results obtained from morphometric parameters and geological and geomorphological conditions analysis and their adaptation to the distribution pattern of spring springs and their average annual discharge rate, the effects of morphometric characteristics on groundwater resources are determined.DEM 10 meters, topographic maps 1: 25000, geological map of 1: 100000, and Dubai springs sources are the data used in this study.
-Findings
The drainage pattern of the Kamyaran basin is dendritic or tree type, and the drainage of the basin is rated 7.The total number of streams in the Kamyaran Basin is 29,776 and the first ones constitute 78% of the total catchment of the basin, indicating a low permeability of the basin.The split ratio of Kamyaran basin is 4.5 and indicates the lithological diversity of the basin.The total length of Kamyaran basins is 2446 km. Routes 1 make up about 61% of the total length of the basin drainage.Abrasives ranked 1 make up about 61% of the total length of the basin drainage. This is due to low-lying reservoir permeability.Also, the difference in mean length of the waterways was due to topographic conditions and slope of the watershed, since the values of the ratio of the length of different river runs to different ranks of the order did not show, The Kamyaran Basin is erosion in the younger stages of the erosion cycle.The drainage rate of the Kamyaran basin is 2.61 Km / Km2, which indicates the low permeability of the basin.Drainage density in the karstic areas in the south of the basin is 1.15, indicating a very suitable permeability of this area.The drainage flood in the Kamyaran basin 3.18, which confirms the high drainage density and low permeability in the basin.The rate of this parameter in the southwestern Karst regions of the basin is 1.02, which indicates high permeability and low drainage density.The drainage tissues of the Kamyaran Basin in the southwestern Karst regions of the basin are very coarse tissue and in other areas of very small type.The penetration number in the Kamyaran basin is 8.29 and 11.44, which indicates low penetration and high runoff coefficient.In the south karst area, the basin has a penetration number of 1.73, indicating high permeability and low runoff coefficient.The shape coefficients of the basin represent a relatively circular shape of the basin and high runoff coefficient.The roughness parameters also indicate significant difference in the height in the basin and as a result of rugged topography and relatively leaky and therefore low permeability.Groundwater potential of Kamyar basin is affected by morphometric conditions in the basin.The northern and central areas of the low power basin and the southern basins of the southwest basin have a high potential for underground water resources.
- Conclusion
The most characteristic feature of the Kamyaran basin is the lithological diversity followed by different geomorphological conditions in different areas of the basin.The lithological diversity and variation of Kamyaran basin affect the values of linear morphometric parameters of the basin.In the impervious areas of the basin, the runoff coefficient is high and the penetration rate is lower and the conditions in the karstic areas are reversed.These differences are due to lithology conditions and heterogeneous geomorphology of the basin.Analysis of the values obtained from the three-dimensional morphometric, linear, shape and roughness parameters of the Kamyaran basin indicates that the lithologic conditions are very influential on morphometric parameters.The studied basin is also affected by lithological conditions in groundwater resources in the northern and central parts of the basin with low potential for underground water resources.The formation of karst geomorphology in the southern heights of the basin, by influencing the morphometric parameters and increasing the penetration rate, has created a high potential for groundwater resources and formed 5 karst springs in the south of the basin.

کلیدواژه‌ها [English]

  • morphometry
  • Groundwater resources
  • Lithology
  • Kamyaran Basin
  • آمانی، محمد؛ نجفی نژاد، علی،1393، اولویت بندی زیرحوزه ها با استفاده از آنالیز مورفومتری، فنون سنجش از دور و GIS، حوزه آبخیز لهندر، استان گلستان، پژوهشنامه مدیریت حوزه آبخیز، شماره 9.
  • اونق، محمد؛ قربانی، محمدصدیق،1390، پهنه‎بندی تحول و حساسیت کارست با استفاده از مدل رگرسیون خطی چندمتغیره در منطقه‎ی کارستی شاهو، پژوهش­های ژئومورفولوژی کمی، شماره 1.
  • سیدی, ئاکو؛ بهرضا نورمند؛ رامین عبدالله کوخی و ارشاد رمضانی، ۱۳۹۵، مدل عددی سیستم جریان آب زیرزمینی دشت کامیاران در حالت ناماندگار، ششمین کنفرانس ملی مدیریت منابع آب ایران، کردستان، دانشگاه کردستان،
  • صالحی، حسین؛ حقی­زاده، علی،1394، ارزیابی و پهنه­بندی کیفیت آب­های زیرزمینی با استفاده از تلفیق مدل AqQA  و سیستم اطلاعات جغرافیایی(مطالعه موردی : دشت کامیاران)، نشریه علمی - ترویجی مهندسی نقشه­برداری و اطلاعات مکانی ، دوره هفتم ، شماره 1.
  • Agarwal, C. S. 1998. Study of drainage pattern through aerial data in Naugarh area of Varanasi district, UP. Journal of the Indian Society of Remote Sensing, 26(4), 169-175.‏
  • Altın, T. B., Altın, B. N. 2011. Development and morphometry of drainage network in volcanic terrain, Central Anatolia, Turkey. Geomorphology, 125(4), 485-503.
  • Avinash, K., Deepika, B., & Jayappa, K. S. 2014. Basin geomorphology and drainage morphometry parameters used as indicators for groundwater prospect: insight from geographical information system (GIS) technique. Journal of Earth Science, 25(6), 1018-1032.
  • Bharathkumar, L., Mohammed-Aslam, M. A. 2009. Prioritizing Groundwater Potential Zones Using Morphometric Analysis: A Case Study of Gulbarga Watershed.‏
  • Chatterjee, A., Tantubay, A. 2009. Morphometric Analysis for Evaluating Groundwater Potential Zones, In Kusangai Jor Watershed Area, Dist. Bolangir, Orissa.‏
  • Geena, G. B., Ballukraya, P. N. 2011. Morphometric analysis of Korattalaiyar River basin, Tamil Nadu, India: A GIS approach. International Journal of Geomatics and Geosciences, 2(2), 383.‏
  • Hajam, R. A., Hamid, A., Bhat, S. 2013. Application of morphometric analysis for geo-hydrological studies using geo-spatial technology–a case study of Vishav Drainage Basin. Hydrol Current Res, 4(157), 2.‏
  • Horton, R. E. 1932. Drainage‐basin characteristics. Eos, transactions american geophysical union, 13(1), 350-361.‏
  • Horton, R. E. 1945. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological society of America bulletin, 56(3), 275-370.‏
  • Hurtrez JE, Sol C, Lucazeau F .1999. Effect of drainage area on hypsometry from an analysis of small-scale drainage basins in the Siwalik hills (central Nepal). Earth Surf Process Landform.
  • Ismail, A. A., Clark, I. 2016. Using GIS techniques and quantitative morphometric analysis to evaluate the groundwater resources in the central flinders ranges, South Australia.‏
  • Jobin, T., Joseph, S., Thrivikramji, K. P., & Abe, G. 2011. Morphometric analysis of the drainage system and its hydrological implications in the rain shadow regions, Kerala, India. Journal of Geographical Sciences, 21(6), 1077.‏
  • Kanth, T. A., Hassan, Z. 2012. Morphometric analysis and prioritization of watersheds for soil and water resource management in Wular catchment using geo-spatial tools. International Journal of Geology, Earth and Environmental Sciences, 2(1), 30-41.‏
  • Nag, S. K. 1998. Morphometric analysis using remote sensing techniques in the Chaka sub-basin, Purulia district, West Bengal. Journal of the Indian society of remote sensing, 26(1-2), 69-76.‏
  • Pareta, K., Pareta, U. 2011. Quantitative morphometric analysis of a watershed of Yamuna basin, India using ASTER (DEM) data and GIS. International journal of Geomatics and Geosciences, 2(1), 248.‏
  • Pirasteh, S., Safari, H. O., Pradhan, B., Attarzadeh, I.2010. Lithomorphotectonics analysis using Landsat ETM data and GIS techniques: Zagros Fold Belt (ZFB), SW Iran. Int Geoinformatics Res Dev J, 1(2), 28-36.‏
  • Rai, P. K., Chandel, R. S., Mishra, V. N., Singh, P. 2018. Hydrological inferences through morphometric analysis of lower Kosi river basin of India for water resource management based on remote sensing data. Applied Water Science, 8(1), 15.
  • Rai, P. K., Mohan, K., Mishra, S., Ahmad, A., Mishra, V. N. 2017. A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India. Applied Water Science, 7(1), 217-232.‏
  • Rajpoot, P. S., Kumar, A., Goyal, S., Trivedi, R. K. 2015. Morphometric analysis and hydrogeomorphological implication of Paisuni river basin Chitrakoot, Madhya Pradesh, India. Journal of Biology and Earth Sciences, 5(1), 68-73.‏
  • Rukmini Florence, K. N,. Satyanarayana Moorthy, D. V. 2017. Delineation of  Groundwater Potential zones of Swarnamukhi sub watershed using RS  GIS, International Journal of Engineering Development and Research, Vol 5:Pp:18-23.
  • Samadder R K, Kumar S, Gupta R P .2011. Palaeochannels and their potential for artificial groundwater recharge in the western Ganga plains. J Hydrol (Amst), 400(1 – 2): 154–164.
  • Sanaullah, M., Ahmad, I., Arslan, M., Ahmad, S. R., Zeeshan, M. 2018. Evaluating Morphometric Parameters of Haro River Drainage Basin in Northern Pakistan. Polish Journal of Environmental Studies, 27(1).
  • Schumm S.A. 1956. Evolution of drainage systems and slopes in Badlands at Perth Amboy, New Jersey. Bull. Geol. Soc. Amer., v.67, pp.597-646..
  • Singh, S., Singh, M. C. 1997. Morphometric analysis of Kanhar river basin. National Geographical Journal of India, 43(1), 31-43.‏
  • Smith, B., & Sandwell, D.2003. Accuracy and resolution of shuttle radar topography mission data. Geophysical Research Letters, 30(9).‏
  • Smith, K. G. 1950. Standards for grading texture of erosional topography. American Journal of Science, 248(9), 655-668.
  • Sreedevi, P. D., Subrahmanyam, K., Ahmed, S.2005. The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environmental Geology, 47(3), 412-420.‏
  • Strahler, A. N. 1964. Part II. Quantitative geomorphology of drainage basins and channel networks. Handbook of Applied Hydrology: McGraw-Hill, New York, 4-39.‏
  • Waikar, M. L., Nilawar, A. P. 2014. Morphometric analysis of a drainage basin using geographical information system: a case study. International journal of multidisciplinary and current research, 2, 179-184.‏
  • Zhang, H. Y., Shi, Z. H., Fang, N. F., Guo, M. H. 2015. Linking watershed geomorphic characteristics to sediment yield: Evidence from the Loess Plateau of China. Geomorphology, 234, 19-27.‏