مدل‌سازی نمایش سطوح ناهموار زمین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگر پسادکتری ژئومورفولوژی، گروه جغرافیای طبیعی، دانشکده علوم جغرافیایی و برنامه ریزی، دانشگاه اصفهان، اصفهان، ایران

2 دانش آموخته ژئومورفولوژی دانشگاه اصفهان، اصفهان، ایران.

3 استاد ژئومورفولوژی، گروه جغرافیای طبیعی، دانشکده علوم جغرافیایی و برنامه‌ریزی، دانشگاه اصفهان، اصفهان، ایران

10.22034/gmpj.2021.131008

چکیده

منظور از مدل‌سازی نمایش سطوح ناهموارزمین، آنالیزکمّی ویژگی‌های فرم‌شناسی سطح زمین است تا بتوان جنبه‌های مختلفی از ویژگی‌های ناهمواری‌های سطح زمین که منظور و مقصود محققین است بارزنمود و بخش‌هایی که کمتر مد نظر است را کمرنگ نمود تا درک ماهیت ناهمواری زمین برای کاربران و محققین آسان‌تر شود. بر حسب کاربرد و نوع تفسیری که از سطوح ناهموار زمین انجام می‌گیرد، تکنیک‌های نمایش سطوح ناهموار زمین می‌تواند تمرکز بیشتری بر سوژه مفسر، گذاشته و به تفسیر و درک بهترمحققین در زمینه مطالعاتشان کمک نماید. در این پژوهش، بااستفاده ازمدل رقومی ارتفاعی وبه کمک برنامه‌نویسی پایتون، مدل‌های مختلفی در نمایش سطوح ناهموار زمین معرفی گردید. در بخش مدل‌سازی برداری، به مدل‌سازی هاشورزنی ناهمواری‌های زمین مبادرت گردید که نتایج حاصل ازآن هاشورزنی خطی سطوح ناهموار با استفاده از مدل‌های MCM ، MM ‌، RPM و MSA می‌باشد. در بخش هاشور نقطه‌ای دو مدل نقطه‌ای تصادفی با وزن شیب و وزن انحنای زمین، طراحی و اجرا گردید و در بخش مدل‌سازی رستری نیز در رویکرد اول، سایه‌زنی ترکیبی شامل: ترکیب مدل سایه‌روشن استاندارد با انحنای زمین، مدل‌های تابشی و مدل‌های اثر خط‌الرأس مدنظر قرارگرفت. در این رویکرد 14 نوع انحنای زمین، با نتایج سایه‌زنی استاندارد تلفیق و مدل‌های جدیدی ارائه گردید. دررویکرد دوم مدل‌های تابشی شامل: تابش کل، مستقیم، پراکنده و مدت زمان تابش مستقیم، با سایه-زنی استاندارد ترکیب و مدل‌های جدیدی ایجاد شد. در رویکرد‌های دیگر، طبقات هیپسومتریک،ماکت منحنی میزان وماکت رنگی منحنی میزان، مدنظر قرار گرفت. مدل‌های فوق‌الذکر که درنمایش سطوح توپوگرافیک زمین کاربرددارد ازنتایج این پژوهش محسوب می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Terrain Surface, Visualization Modeling

نویسندگان [English]

  • Fatemeh Nematollahi 1
  • sina solhi 2
  • Mohammed Hussain Ramesht 3
1 Postdoctoral researcher, Department of Physical Geography, Faculty of Geographical Sciences and Planning, University of Isfahan, Isfahan, Iran
2 Graduated in geomorphology, University of Isfahan, Isfahan, Iran
3 Professor, Department of Physical Geography, Faculty of Geographical Sciences and Planning, University of Isfahan, Isfahan, Iran
چکیده [English]

Terrain Surface, Visualization Modeling
Introduction
There are many different types of the terrain visualization techniques, which are the result of the evolution over time and the development of technological innovations. Earth’s surface roughness plays a key role in controlling surface and the Earth's atmosphere processes. This relationship is so strong that understanding the nature of the terrain topography can directly lead to clarity in understanding of these processes, both analytically and computationally. Therefore, the analysis and visualization of the terrain topography has provided significant applications in many of the activities of the Geographic Information System and environmental Modeling. Geomorphologists and cartographers both use information derived from digital elevation models to quantify the shape and structure of the Earth's topographic surfaces. Cartographic purpose of terrain relief visualization is to display landforms and features of the earth’s surface which is done through drawing hachures and other methods that lead to more realistic terrain surface visualization. Cartographers have used a variety of mechanisms, including colors and shades to create a 3-dimensional appearance of topographical surface in 2-dimensional surface of the maps. The recent study tries to present different ideas and models in the section of terrain topography visualization. For this purpose, vector (point and line) and raster data structure, Digital elevation model with respecting to the concepts of geomorphometry and digital terrain modeling had been used. And python programming has been widely used to design and automating the algorithms of the models.
Materials and Methods
In the first part, the raster database was prepared and arranged. The raster database contains elevation data that includes digital surface model. Which is currently the most accurate elevation data on a free, global scale.
digital Surface model released by the Japan Space Agency in May and October 2015 with a horizontal resolution of about 23 meters were used to model the visualization of terrain topography surfaces. This data is obtained from the ALOS satellite images which is extracted from a five-meter grid data with global coverage which is now the most accurate elevation data in the global scale. In the next step, slope calculated using four slope algorithms on a digital surface model grid structure. The aspect was calculated in the same way. The aspect layer with the results of these four slope algorithms, averaged and standard hill shade calculated using common formula in the geographic information system. Then, the visualization modeling of the terrain topographic surfaces followed in two parts. In the vector modeling section, the hachure modeling of the terrain surface carried out which the results in the field of linear hachure drawing includes: Max-Center-Min, Max-Min, Random Point – Min and multi-sector aspect hachuring models which coded in the python programming environment. In the Point hachure section, two random point models with slope weight and random point model with curvature as a weight were modeled, coded and executed. In the raster modeling section, three model approaches were considered. In the first approach, blended shading was followed, which included combining standard hill shading model with a variety of terrain curvature, radiation models (Morphoradiation), and ridgeline effect models.14 types of terrain curvature were used and combined with standard hill shading to create new models for visualization of terrain surface topography. In the second part, radiation models including direct radiation, direct radiation duration, diffuse radiation and global radiation were combined with standard hill shading to create new models. To add the effect of the ridgelines in the display of the terrain surface topography, the method provided by Solhi and Seif (1399) was used to identify the ridges of the terrain topography.
Results and Discussion
Various models were prepared and presented in the terrain surface topography visualization. Part of the modeling is related to the vector data structures and the other part is related to the raster data structures. In the vector modeling section, four algorithms including: Max-Center-Min, Max-Min, Random point-Min and Multi-Sector Aspect hachuring were configured and presented. These four algorithms have the ability to create linear hachures on the terrain topography surfaces in order to create a spatial dimension of the digital elevation model. All four algorithms are performed using the moving window technique and automatically apply linear hachuring with using digital elevation model. The second part is related to raster data structures, which includes hybrid models (combining standard hill shade with different terrain curvatures types, radiation models and ridgeline effect), hypsometric tinting, contour maquette, and colored contour maquette.
Conclusion
Terrain surface topography visualization has wide applications and plays important role in the cartography and preparation of base-maps, geological maps and topographic maps as well as thematic maps such as geomorphological maps and many other maps. Modeling terrain surface topography, using different ideas, methods, and techniques, can be effective in improving and the visualization of terrain surfaces in different applications. In this research, with emphasis on the subject of terrain visualization modeling, different methods and models were presented both in the section of vector data structures (linear and dotted) and raster data structures. Various methods and models have been proposed that can be used in a wide range of environmental studies as well as cartographic methods and techniques. The presented models are practiced only from the digital elevation model and do not require field and special data, which are considered as features and strengths of these models. Future researchers are advised to develop and evolve the models, methods and techniques of this field of study and try to create practical and creative models. The field of digital terrain modeling, in the analytical and demonstration sections, creates a suitable platform for environmental science studies and in the form of basic and fundamental research can lead to scientific creation and dynamism in this field.
Keywords: Digital Elevation Model, Terrain Modeling, Topographical surface visualization, Geomorphometry

کلیدواژه‌ها [English]

  • Geomorphometry
  • Digital Elevation Model
  • terrain modeling
  • Topographical surface visualization
  • صلحی، س.، سیف، ع.، 1399. مدل­سازی الگوی کرنل در تشخیص لندفرم­های زمین (با تأکید بر لندفرم­های یخچالی و مجاور یخچالی) در محدودة کمربند کوهستانی البرز، پژوهش­های جغرافیای طبیعی، دورة 52، شمارة 2، تابستان 1399، ص 271 –
    • Brassel, K. 1974. A model for automatic hill-shading. The American Cartographer, 1(1), 15-27.
    • Collier, P., Forrest, D., & Pearson, A. 2003. The representation of topographic information on maps: the depiction of relief. The Cartographic Journal, 40(1), 17-26.
    • Evans, I. S. (1972). General geomorphometry, derivatives of altitude, and descriptive statistics. Spatial analysis in geomorphology, 17-90.
    • FU, P. 2000. A Geometric Solar Radiation Model with Applications in Landscape Ecology. Ph. D. Thesis, Department of Geography, University of Kansas.
    • Florinsky, I. V. (1998). Accuracy of local topographic variables derived from digital elevation models. International Journal of Geographical Information Science, 12(1), 47-62.
    • Fu, P., & Rich, P. M. 2000. The solar analyst 1.0 user manual. Helios Environmental Modeling Institute, (HEMI), USA
    • Fu, P., & Rich, P. M. 2002. A geometric solar radiation model with applications in agriculture and forestry. Computers and electronics in agriculture, 37(1-3), 25-35.
    • Gallant, J. C., & Hutchinson, M. F. 1996. Towards an understanding of landscape scale and structure. In Proceedings of the Third International Conference/Workshop on Integrating GIS and Environmental Modeling (pp. 21-26).
    • Hengl, T., Gruber, S., & Shrestha, D. P. 2003. Digital terrain analysis in ILWIS. International Institute for Geo-Information Science and Earth Observation Enschede, The Netherlands, 62.
    • Hodgkiss, A. G. 1981. Understanding maps: a systematic history of their use and development, Wm Dawson & Son,
    • Horn, B. K. 1981. Hill shading and the reflectance map. Proceedings of the IEEE, 69(1), 14-47.
    • Hurni, L. 2008. Cartographic mountain relief presentation. In Mountain mapping and visualisation: proceedings of the 6th ICA mountain cartography workshop (pp. 11-15).
    • Imhof, E. 1982. Cartographic relief presentation. Walter de Gruyter GmbH & Co KG.
    • Jenny, B., & Hurni, L. 2006. Swiss-style colour relief shading modulated by elevationand by exposure to illumination. The Cartographic Journal, 43(3), 198-207.
    • Jenny, B. 2001. An interactive approach to analytical relief shading. Cartographica: The International Journal for Geographic Information and Geovisualization, 38(1-2), 67-75.
    • Jenny, B., Hutzler, E., & Hurni, L. 2010. Scree representation on topographic maps. The Cartographic Journal, 47(2), 141-149.
    • Karssen, A. J., & AJ, K. 1982. Mask hill shading: a new method of relief representation, ITC Journal.
    • Keates, J. S. 2014. Understanding maps. Routledge.
    • Kennelly, P., & Stewart, J. 2006. A uniform sky model to enhance shading of terrain and urban elevation models. Cartography and Geographic Information Science, 33(1), 21-36.
    • Kennelly, P. J., & Kimerling, A. J. 2004. Hillshading of terrain using layer tints with aspect-variant luminosity. Cartography and Geographic Information Science, 31(2), 67-77.
    • Knowles, R. D., & Stowe, P. W. E. 1974. Europe in maps: topographical map studies of Western Europe. 1 (1974). Longman.
    • Krcho, J. (1973). Morphometric Analysis of Relief on the Basis of Geometric Aspect of Field Theory (= Acta Geographica Universitatis Comenianae). Geographico-physica.
    • Krcho, J. (1983). Teoreticka concepcia an interdisciplinarne aplikacie komplexného digitalneho modelu reliéfu pri modelovanï dvojdimenzionalnych poli. Geograficky Cas, 35, 265-291.
    • Li, Z., Zhu, C., & Gold, C. 2004. Digital terrain modeling: principles and methodology. CRC press.
    • Marston, B. E., & Jenny, B. 2015. Improving the representation of major landforms in analytical relief shading. International Journal of Geographical Information Science, 29(7), 1144-1165.
    • Mitasova, H., & Hofierka, J. (1993). Interpolation by regularized spline with tension: II. Application to terrain modeling and surface geometry analysis. Mathematical geology, 25(6), 657-669.
    • Rich, P. M., & Fu, P. 2000. Topoclimatic habitat models. In Proceedings of the fourth international conference on integrating GIS and environmental modeling (pp. 2-8).
    • Rich, P., Dubayah, R. C., Hetrick, W., & Saving, S. 1994. Using viewshed models to calculate intercepted solar radiation: applications in ecology. American Society for Photogrammetry and Remote Sensing Technical Papers. In American Society of Photogrammetry and Remote Sensing (pp. 524-529).
    • Ritter, P. 1987. A vector-based slope and aspect generation algorithm. Photogrammetric Engineering and Remote Sensing, 53(8), 1109-1111.
    • Robinson, A. H., Morrison, J. L., Muehrcke, P. C., Kimerling, A. J., & Guptill, S. C. 1995. Elements of Cartography–6th Ed, 544 pp. New York, John Willey & Sons.
    • Sharpnack, D. A. 1969. An algorithm for computing slope and aspect from elevations. Photogrammetric Engineering, 35(3), 247-248.
    • Sharyi, P., & Stepanov, I. N. (1991). On the second derivative method in geology. Doklady Akademii Nauk SSSR, 319(2), 456-460.
    • Shary, P. A. (1995). Land surface in gravity points classification by a complete system of curvatures. Mathematical Geology, 27(3), 373-390.
    • Shary, P. A., Sharaya, L. S., & Mitusov, A. V. (2002). Fundamental quantitative methods of land surface analysis. Geoderma, 107(1-2), 1-32.
    • Slocum, T., McMaster, R., Kessler, F., & Howard, H. 2004. Thematic Cartography and Geographic Visualization. Upper Saddle River, NJ, 4.
    • Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., & Iwamoto, H. 2014. Precise global DEM generation by ALOS PRISM. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(4), 71.
    • Takaku, J., Tadono, T., & Tsutsui, K. 2014. Generation of high – resolution global DSM from ALOS prism. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 2(4).
    • Tufte, E. R. 1990. Envisioning information (No. 511.5 T914e). Graphic Press.
    • Tzvetkov, J. (2018). Relief visualization techniques using free and open source GIS tools. Polish Cartographical Review, 50(2), 61-71.
    • Unwin, D. J. 1981. Introductory spatial analysis (Vol. 748). Taylor & Francis.
    • Wiechel, H. 1878. Theorie und Darstellung der Beleuchtung von nicht gesetzmässig gebildeten Flächen mit Rücksicht auf die Bergzeichnung. Civilingenieur, 24, 335-364.
    • Wilson, J. P., & Gallant, J. C. 2000. Digital terrain analysis. Terrain analysis: Principles and applications, 6(12), 1-27.
    • Yoëli, P. 1959. Relief shading. Surveying and Mapping, 19(2), 229-232.
    • Yoëli, P. 1965. Analytical hill shading. Surveying and Mapping, 25(4), 573-579.
    • Yoëli, P. 1966. Analytical hill shading and density. Surveying and Mapping, 26(2), 253-259.
    • Young, M. (1978). Terrain analysis: program documentation. Statistical characterisation of altitude matrices by computer: Report, 5.
    • Young, T. (1805). III. An essay on the cohesion of fluids. Philosophical transactions of the royal society of London, (95), 65-87.
    • Zevenbergen, L. W., & Thorne, C. R. 1987. Quantitative analysis of land surface topography. Earth surface processes and landforms, 12(1), 47-56.