بررسی تاثیر تکتونیک فعال بر تغییرات ژئومورفولوژیکی سواحل ایرانی مکران (مطالعه موردی: چابهار)

نوع مقاله : مقاله پژوهشی

نویسنده

گروه اقیانوس شناسی، دانشکده علوم دریایی، دانشگاه دریانوردی و علوم دریایی چابهار

10.22034/gmpj.2021.131025

چکیده

منطقه مورد مطالعه در شمال سواحل دریای عمان و جنوب شرقی ایران در استان سیستان و بلوچستان واقع شده است. یکی از روش های جدید جهت مشاهده ی حرکات زمین ساختی و زمین لرزه ها استفاده از دانش مورفوتکتونیک می باشد. پیشینه تحقیق نشان می دهد که مکران یک منشور برافزاینده بزرگ است که در طی دوران سنوزوئیک در جنوب شرقی ایران و جنوب غربی پاکستان شکل گرفته است. هدف از انجام این تحقیق بررسی میزان تاثیر فعالیتهای تکتونیکی بر تغییرات ژئومورفولوژیکی سواحل جنوب شرق ایران است. روش تحقیق شامل مطالعات کتابخانه ای و اسنادی، عملیات میدانی، آزمایشگاهی، جمع بندی نتایج و نتیجه گیری نهایی بوده است. طبقه بندی سنگهای کربناته با استفاده از روش دانهام1 (1962)، و نامگذاری رخساره های رسوبی با استفاده از روش فلوگل2 (2010)، انجام شد. نتایج این تحقیق معرف یک ستون چینه نگاری به منظور ترسیم نوسانات نسبی سطح آب دریاست که منجر به شناسایی دو گروه رخساره رسوبی کربناته و سیلیسی آواری گردید. مدل بازسازی شده محیط رسوبی موید بخش های بالایی و میانی حاشیه ساحلی می باشند. از دیگر نتایج این تحقیق، تغییرات ژئومورفولوژیکی شاخصی است که از شرق به غرب منطقه مشاهده می شود. تغییر شکل چشم اندازهای ژئومورفولوژیکی، شواهد تکتونیکی و زمین شناسی نشان داد که تغییرات ژئومورفولوژیکی سواحل چابهار، ناشی از فرآیندهای رسوبگذاریآ اثر امواج و تحت تاثیر فعالیت های تکتونیکی است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of active tectonic impact on geomorphological changes of the Iranian coast of Makran (Case study: Chabahar)

نویسنده [English]

  • Mohyeddin Ahrariroudi
Chabahar university
چکیده [English]

Introduction
The study area is located in the north of the Oman Sea and southeast of Iran in Sistan and Baluchestan province. The Makran Trench is the physiographic expression of a subduction zone along the northeastern margin of the Oman Sea adjacent to the southwestern coast of Baluchestan of Pakistan and the southeastern coast of Iran. Numerous geomorphological landscapes such as cliffs, Omega and U-shaped bays, erosion columns, various faults and so on have been formed in a beautiful and unique way in the region. In this region the oceanic crust of the Indian Ocean Plate is being subducted beneath the continental crust of the Makran Plate. Makran is one of the largest accretionary wedges on the globe. The study area between latitudes 25 ̊ to 25̊ and 45̍ north and longitude 56 ̊, 45̍ lengths up to 61̊, 52̍ north of the Sea of Oman and the north-eastern Sistan-Baluchestan province is located. The study area is located in the external part, the structure of the Makran coastal land area larger than the selected range. In the Makran region, the Arabian Plate subducts beneath the Eurasian Plate at ~4 cm/yr. This subduction is associated with an accretionary wedge of sediments which has developed since the Cenozoic To the west, the Makran Trench is connected by the Minab Fault system to the Zagros fold and thrust belt. The Makran accretionary complex is characterized by a number of features associated with escaping water and methane. Mud volcanoes are found onshore in both Iran and Pakistan, and cold seeps exist offshore for example Tang Mud volcano. The formation of an island (Zalzala Jazeera) after the 2013 Baluchestan earthquakes is thought to be the result of a mud volcano. Extreme coastal inundation associated with the 2004 Indian Ocean and 1945 Makran tsunamigenic–earthquakes highlight the risk of Tsunamis to coastlines of the northern Oman Sea (Vaziri et al., 2019).
Materials and methods
In this research have been used the methods of Office and library studies, Field Studies (photographed and documented in structural geology features, 85 thin sections and 62 washed samples that were collected in the study areas), Laboratory studies [Thin sections were stained using Alizarin Red S (Dickson, 1966) and were studied using standard petrographic microscope techniques. Carbonate rocks were classified according to Dunham’s carbonate classification (1962), and siliciclastic rocks were classified using Folk’s classification (1980). At this point, a set of 85 samples, 62 thin sections were studied to determine the lithofacies. In each of the thin, skeletal and non-skeletal components were identified and the percentage of each constituent grains major and minor chart using comparative Flugel (2010), respectively. As well as 23 samples of sediments were paleontological studies. On the basis of petrographic studies classification of carbonate rocks by Dunham’s method and nomination of microfacies by Flugel’s classification was done and three basic microfacies have been identified. Based on the identification of different lithofacies and interpretation of their depositional environments. We applied the concepts that were developed by many workers to determine sequence boundaries, depositional sequences and system tracts] and Data analysis, interpretation and conclusions: The initial processing by computer skills such as Excel and final processing using software was computed. Sea level positions were interpreted for the Pleistocene interval based on lithofacies variations with the sequence stratigraphic framework established in this study.
Results and discussion
The rock types are siltstone, sandstone, conglomerate and lumachelle and limestone. Strata of the Makran Formation are subdivided into two major carbonate lithofacies and two siliciclastic lithofacies. Based on skeletal grains and the amounts of micrite, the sediments deposited in the lithofacies of the sandy packstone to siltstone lithofacies were deposited in relatively deep water, below fair-weather wave base under low-energy environmental (Open-Marine) conditions. The presence bioclastic debris of stenohaline indicate that sandy grainstone were deposited in an upper shoreface setting. Plotting the interpreted relative water depths vs. Stratigraphic position for each occurrence of each subfacies shows a predictable stacking pattern that formed coarsening upward cycles. These meter-scale shallowing-upward cycles in the Pleistocene interval formed in response to sea level fluctuations coupled with subsidence due to both sediment loading and tectonic movements. Because of terrigenous influx, siliciclastic sandstone and siltstone were deposited in the dominantly carbonate-producing area, formed a mixed siliciclastic-carbonate sequence. At times when the siliciclastic point sources were shifted far to the south carbonate deposition reestablished itself in southeastern Iran.
Conclusion
Makran is a constant competition between tectonic processes and erosion processes, shaping the geomorphological changes of the region (such as erosion columns, folds, cliffs, bad land, Omega bays, sand dunes, dissolution cavities, taphoni cavities, coastal falls and so on). The presence of several mud volcano in Makran accretionary complex with special features in the coastal areas of Iran and Pakistan shows the effect of active tectonics on the geomorphology of the study area. Due to the increase in sediment thickness from west to east, increase in subduction rate of Makran zone, coastal uplift and faulting of coastal barracks and the entry of destructive sediments and the direction of old flow in sedimentary structures, it seems that the origin of clastic grains in the north It is a study that reduces the amount of detrital particles and creates conditions for the sedimentation of carbonates. Therefore, the coastal sedimentary model is proposed for Pleistocene sediments that have been deposited under dual conditions in terms of sedimentary environment energy. These geomorphological changes are caused by regional sea level changes, sedimentation process, the tectonic process caused by subduction of oceanic and continental plates, relative sea level changes and evidence-based climate change due to evidence-based glacial and interglacial periods.

کلیدواژه‌ها [English]

  • Sea level changes
  • Geomorphology
  • Tectonics
  • Oman Sea
  • Chabahar
آقانباتی، ع.، 1389. زمین شناسی ایران، سازمان زمین شناسی و اکتشافات معدنی کشور، چاپ سوم، 586 صفحه.
علایی طالقانی، م.، 1388. ژئومورفولوژی ایران، انتشارات قومیس، 360 صفحه.
غریب‌رضا، محمدرضا، 1381، بررسی تغییرات خطوط ساحلی استان سیستان و بلوچستان، مرکز تحقیقات حفاظت خاک کشور، بخش حفاظت سواحل.
نژادافضلی، ک.؛ لک، ر. و قریشی، م. ، 1396، بررسی تغییرات ژئومورفولوژیکی و ویژگی های رسوب گل فشان ناپگ، مکران، ایران، نشریه علوم زمین. دوره 26، شماره 104، صفحه 261 تا 266
Abedi, M., Bahroudi, A., 2016. A geophysical potential field study to image the Makran subduction zone in SE of Iran. Tectonophysics, 688, pp. 119-134
Azizi, H.; Lucci, F.; Stern, R.J.; Hasannejad, S. and Asahara, Y., 2018. The Late Jurassic Panjeh submarine volcano in the northern Sanandaj-Sirjan Zone, northwest Iran: mantle plume or active margin? Lithos, 308-309, pp. 364-380
Back, S. and Morley, C.K., 2016. Growth faults above shale – Seismic-scale outcrop analogues from the Makran foreland, SW Pakistan. Marine and Petroleum Geology, V. 70, pp. 144-162
Bird, E., 2008, Coastal Geomorphology, Second Edition, University of Melbourne, Australia, 438 P.
Burbank, D.W. and Anderson, R.S., 2001, Tectonic Geomorphology, Blackwell Science, Massachusetts, pp. 14-39.
Burbank, D. W; Anderson, R. S., 2012.Tectonic Geomorphology. Second Edition. Publicated by Wiley-Blackwell. USA. 454 P.
Budd, D.A. and Harris, P.M., 1990, Carbonate-siliciclastic mixtures, Society for Sedimentary Geology, Reprint Series No. 14, 272 P.
Burg, J.P.; Bernoulli, D.; Smit, J. and Dolati, A., 2013, Structural style of the Makran Tertiary accretionary complex in SE-Iran, K. Al Hosani, F. Roure, R. Ellison, S. Lokier (Eds.), Lithosphere Dynamics and Sedimentary Basins: The Arabian Plate and Analogues, Springer Verlag, Heidelberg, pp. 239-259
Burg, J.P., 2018. Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation, Earth science reviews, V. 185, PP. 1210-1231
Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G. and Winker, C., 2009, Towards the standardization of sequence stratigraphy. Earth-Science Reviews, 92(1), pp. 1–33
Davis, W.M., 1899. Thegeographical cycle. Geographical Journal. V.14, pp. 481-504
Delisle, G.; Rad, U. von; Andruleit, H.; Daniels, C. von; Tabrez, A.; Inam, A., 2002. "Active mud volcanoes on- and offshore eastern Makran, Pakistan". International Journal of Earth Sciences. V. 91 (1), pp. 93–110. 
Dickson, J.A.D., 1966. A modified staining technique for carbonate in thin section: Nature, V. 205, 287 p.
Dolati, A., 2010. Stratigraphy, Structural geology and low-temperature termochronology across the Makran accretionary wedge in Iran, Swiss Institute of Technology Zurich, Diss ETH, No. 19151, 165 P.
Dolati, A. and Burg, J.-P, 2013. Preliminary fault analysis and paleostress evolution in the Makran Fold-and-Thrust Belt in Iran. Hosani, K. Al; Roure, F.; Ellison, R. and Lokier, S. (Eds.), Lithosphere Dynamics and Sedimentary Basins: The Arabian Plate and Analogues, Springer Verlag, Heidelberg, pp. 261-277
Dunham, R.J., 1962, In W.E. Ham (Ed.), Classification of carbonate rocks according to depositional – texture, Amer. Ass. Petrol. Geologists Memoir, V. 1, pp. 108–121.
Einsele, G., 2000, Sedimentary Basin: Evolution, Facies and Sediment Budget (2nd Edition), Springer Verlag, 292 P.
Emery, D., & Myers, K. (Eds.), 2009, Sequence stratigraphy. Malden, MA: Wiley.186 P.
Folk, R. L., 1980, Petrology of sedimentary rocks: Austin, Texas, Hemphill Publishing, 182 p.
Flugel, E., 2010. Microfacies of Crabonate Rocks: Analysis, Interpretation and Application: Springer Verlag, Berlin, 976 P.
Hamzeh, M.A., Jokar, R. Beskaleh, Gh.R. 2014. Classification of Iranian Oman Sea coasts on sedimentology and geomorphology (Chabahar Bay to Gawater Bay). 32nd National and the 1st International Geosciences Congress Abstract, Tehran, p. 143 (in Persian).
Hamzeh, M.A., Okal, E.A, Ghasemzadeh, J., Beskaleh, Gh.R. 2013. Assessing effects of the tsunami 1945 Pakistan on the Iranian Makran Coast. First National Conference on the development of Makran coast and sea power Iran, Chabahar, paper, 1123: 1–9 (in Persian)
Hassanzadeh, J. and Wernicke, B.P., 2016. The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions, Tectonics, 35 (3), pp. 586-621
Haghipour, N.; Burg, J.-P.; Ivy-Ochs, S.; Hadjas, I.; Kubuk, P.W. and Christl, M., 2015. Correlation of fluvial terraces and temporal steady-state incision on the onshore Makran accretionary wedge in southeastern Iran: insight from channel profiles and 10Be exposure dating of strath terraces, Geol. Soc. Am. Bull., 127 (3–4), pp. 560-583
Haq, B.; Hardenbol, J. and Vail, P.R., 1988. Mesozoic and Cenozoic Chronostratigraphy and Eustatic Cycles: In: Wilgus, C. K.; Hastings, B. S.; Kendall, C.G.St.C.; Posamentier, H.W.; Ross, C. A. and Van Wagoner, J.C. (Eds.), Sea-Level changes: An Integrated Approach, SEPM Special Publication No. 42, pp. 71-108.
Handford, C. R., and R. G. Loucks, 1993. Carbonate depositional sequences and systems tracts—responses of carbonate platforms to relative sea level changes, in Loucks, R. G. and Sarg, J. F. eds., Carbonate sequence stratigraphy—recent developments and applications: AAPG Memoir 57, p. 3–41.
Harwood, G.M. and Sullivan, M., 1991. Sedimentary history of the Moyvoughly area, County Westmeath, Ireladn: evidence for syn-sedimentary fault movements in a mixed carbonate-siliciclastic system of the Courceyan age, in: Lomand, A.J. and Harris, P.M. (Eds.) Mixed carbonate-siliciclastic sequences, Society for Sedimentary Geology, pp. 353-384.
Hosseini-Barzi and M., Talbot, C., 2003. A tectonic pulse in the Makran accretionary prism recorded in Iranian coastal sediments, Journal of the Geological Society, London, V. 160, pp. 903-910.
Hosseini-Barzi, M., 2010. Spatial and temporal diagenetic evolution of Plio-Pleistocene syn-tectonic sediments in pulsatory uplifted coastal escarpments of Iranian Makran, In: Leturmy, P. and Robin, C. (Eds.), Tectonic and Stratigraphic Evolution of Zagros and Makran during the Mesozoic–Cenozoic, Geological Society, London, Special Publications, No. 330, pp. 273–
Hunziker, D., 2014. Magmatic and Metamorphic History of the North Makran Ophiolites and Blueschists (SE Iran): Influence of Fe3+/Fe2+ Ratios in Blueschist Facies Minerals on Geothermobarometric Calculations, ETH Zurich, Switzerland, Zürich (ETH-Zürich 364 P.)
Jafari, A.; Fazlnia,A. and Jamei, S., 2018. Geochemistry, petrology and geodynamic setting of the Urumieh plutonic complex, Sanandaj–Sirjan zone, NW Iran: new implication for Arabian and Central Iranian plate collision, J. Afr. Earth Sci., 139, pp. 421-439
Kirby, E., and Whipple, K. X., 2012. Expression of active tectonics in erosional and scapes, J. Struct. Geol., 44, pp. 54–75
Kober, F., G. Zeilinger, S. Ivy-Ochs, A. Dolati, J. Smit, and P. W. Kubik, 2013. Climatic and Tectonic Control on Fluvial and Alluvial Fan Sequence Formation in the Central Makran Range, SE-Iran. Global and Planetary Change 111.
Kopp, C.; Fruehn, E.; Flueh, E.; Reichert, C.; Kukowski, N; Bialas, J.; Klaeschen, D., 2000. Structure of the Makran subduction zone from wide-angle and reflection seismic data. Tectonophysics. 329 (1–4), pp. 171–191
Krumbein, W. C. and Sloss, L. L., 1963. Stratigraphy and sedimentation: 2nd, San Francisco, W. H. Freeman & Co., 660p.
McCall, G.J.H., 2002. A summary of the geology of the Iranian Makran. Clift, P.D.; Kroon, F.D.; Gaedecke, C. and Craig, J.  (Eds.), The Tectonic and Climatic Evolution of the Arabian Sea Region, Geological Society, London, pp. 147-204
Miall, A.D., 2000. Priciples of Sedimentary Basin Analysis, Third Edition, Springer, University of Toronto, Canda, 616 P.
Miall, A. D., 2006. Reconstructing the architecture and sequence stratigraphy of the preserved fluvial record as a tool for reservoir development: a reality check. American Association of Petroleum Geologists Bulletin, V. 90, pp. 989–1002.
Miall, A.D., 2010. The Geology of Stratigraphic Sequences, Second Edition, Speringer-verlag, Berlin, 433 P.
Moghadam, H.S. and Stern, R.J., 2015. Ophiolites of Iran: keys to understanding the tectonic evolution of SW Asia: (II) Mesozoic ophiolites, J. Asian Earth Sci., V. 100, pp. 31-59
Mohammadi, A.; Burg, J.-P.; Guillong, M. and Von Quadt, A., 2017. Arc magmatism witnessed by detrital zircon U-Pb geochronology, Hf isotopes and provenance analysis of Late Cretaceous-Miocene sandstones of onshore Western Makran, Am. J. Sci., V. 317 (8), pp. 941-964
Okal, E.A., Fritz, H.M., Hamzeh, M.A. and Ghasemzadeh, J., 2015. Field survey of the 1945 Makran and 2004 Indian Ocean Tsunamis in Baluchistan, Iran. Pure and Applied Geophysics 172: 3343–3356.
Penney, C.; Copley, A. and Oveisi, B., 2015. Subduction tractions and vertical axis rotations in the Zagros–Makran transition zone, SE Iran: the 2013 May 11 Mw 6.1 Minab earthquake, Geophys. J. Int., V. 202 (2), pp. 1122-1136
Posamentier, H. M., M. T. Jervey, and P. R. Vail, 1988. Eustatic controls on clastic deposition I—conceptual framework, in Wilgus, C. K.; Hastings, B.; Kendall, C. G. St. C.; Posamentier, H. W.; Ross, C. A. and Van Wagoner, J. C. (eds.), Sea-level changes: an integrated approach: SEPM Special Publication 42, pp. 109–124
Prins, M.A.; Postma, G and Weltje, g.J., 2000. Controls on terrigenus sediment supply to the Arabian Sea during the late quaternary: The Makran continental slope, Marine Geology, V. 169, pp. 351-371
Read, J.F., 1985. Carbonate platform facies models: AAPG Bulletin, V. 66, pp. 860–878
Reinson, G.E., 1992. Transgressive barrier island and estuarine systems, In Facies Models–Response to Sea Level Change, In: Walker, R. G. and James, N. P. (Eds.), Geological Association of Canada, GeoText 1, pp. 179–194.
Regard, V.; Bellier, O.; Thomas, J.C.; Abassi, M.R.; Mercier, J.; Shabanian, E.; Fefhhi, K. and Soleymani, S., 2004. Accommodation of Arabia-Eurasia convergence in the Zagros-Makran transfer zone, SE Iran: A transition between collision and subduction through a young deforming system, Tectonics, V. 23, TC4007.
Regard, V.; Hatzfeld, D.; Molinaro, M.; Aubourg, C.; Bayer, R.; Bellier, O.; Yamini-Fard, F.; Peyret, M.; Abbassi, M., 2010. The transition between Makran subduction and the Zagros, collision: recent advances in its structure and active deformation. Geological Society, London, Special Publications 330 (1):pp. 43–64.
Shahabpour, J., 2010. Tectonic implications of the geochemical data from the Makran igneous rocks in Iran, Island Arc, V. 19 (4), pp. 676-689
Swift, D.J.P.; Oertel, G.F.; Tillman, R.W. and Thorne, J.A., 1991. Shelf sand and sandstone bodies, Specical publication 14, International association of sedimentologist, Blackwell Scientific Publication, Oxford, 295 P.
Torsvik, T.H. and Cocks, L.R.M., 2017. Earth History and Palaeogeography, Cambridge University Press, Cambridge, 317 P.
Tucker, M.E., Mixed clastic-carbonate cycles and sequences: Quaternary of Egypt and Carboniferous of England, Geologia Croatica, V. 56, pp. 19-37.
Tucker, M. E., and V. P. Wright, 1990. Carbonate sedimentology: Oxford, United Kingdom, Blackwell Scientific Publication, 482 P.
Vail, P. R., F. Audemard, S. A. Bowman, P.N. Eisner, and C. Perez Cruz, 1991. The stratigraphic signatures of tectonics, eustasy and sedimentology—an overview, I n G. Einsele, W. Ricken, and A. Seilacher, eds., Cycles and events in stratigraphy: Berlin, Springer-Verlag, pp. 617–659.
Van Wagoner, J. C., H. W. Posamentier, R. M. Mitchem,P.R.Vail, J. F. Sarg, T. S. Lutit, and J. Hardenbol, 1988. An overview of the fundamentals of sequence stratigraphy and key definitions, in C. K. Wilgus, B. Hastings, C. G. St. C. Kendall, H. W. Posamentier, C. A. Ross, and J. C. Van Wagoner, eds., Sea-level changes: an integrated approach: SEPM Special Publication 42, pp. 39–45.
Van Wagoner, J.C.; Mitchum, R.M.; Campion, K.M. and Rahmanian, V.D. 1990. Siliciclastic Sequence Stratigraphy in well logs, cores, and outcrops, Concepts for High-Resolution Correlation of Time and Facies, AAPG Methods in Exploration Series, V. 7, 55 P.
Vaziri,S. H.; Reinhart,E.G. and Pilarczyk, J.E., 2019. Coastal foraminifera from the Iranian coast of Makran, Oman Sea (Chabahar Bay to Gawater Bay) as an indicator of tsunamis, Geopersia, PP. 43-63
Walker, R. G., 2006. Facies models revisited. In H. W. Posamentier & R. G. Walker (Eds.), Facies models revisited. Tulsa: SEPM (Society for Sedimentary Geology), Special Publication No. 84, pp. 1–17
Wilson J.L., 1975. Carbonate facies in geologic history, Springer-Verlag, New York, 471 P.
Wilson, C.G.; Matisoff, G.; Whiting, P.J. and Klarer, D.M., 2005. Transport of Fine Sediment through a Wetland Using Radionuclide Tracers: Old Woman Creek, OH, Journal of Great Lakes Research, V. 31, pp. 56-67.
Yang, T.N.; Chen, J.L.; Liang, M.J.; Xin, D.; Aghazadeh, M.; Hou, Z.Q. and Zhang, H.R., 2018. Two plutonic complexes of the Sanandaj-Sirjan magmatic-metamorphic belt record Jurassic to Early Cretaceous subduction of an old Neotethys beneath the Iran microplate, Gondwana Res., V. 62, pp. 246-268.